Skip to main content

Advertisement

Log in

Estimating Global Energy Flow from the Global Upper Ocean

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The relative significance of short multi-year linear trends in the global integral of 0–700 m ocean heat content anomaly (OHCA) is investigated by examining the overlapping segments of the 16-year OHCA curve from Lyman et al. (Nature 465:334–337, 2010). Segments of 4 years and less are found not to be significantly different from each other or from 0 at the 90% confidence interval. Likewise, short 5- to 7-year segments are not statistically different from each other. Ten-year and longer trends are significant and provide a useful comparison for satellite observations of the radiation imbalance at the top of the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bindoff NL et al (2007) Observations: oceanic climate change and sea level. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Barker PM, Dunn JR, Domingues CM, Wijffels SE (2011) Pressure sensor drifts in Argo and their impacts. J Atmos Ocean Tech 28:1036–1049. doi:10.1175/2011JTECHO831.1

    Article  Google Scholar 

  • Boyer TP, Antonov JI, Baranova OK, Garcia HE, Johnson DR, Locarnini RA,Mishonov AV, Seidov D, Smolyar IV, Zweng MM (2009) World Ocean Database 2009. In: Levitus S (ed) NOAA Atlas NESDIS 66, U.S. Gov. Printing Office, Washington, DC, 216 pp, DVDs

  • Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multidecadal sea-level rise. Nature 453:1090–1093. doi:10.1038/nature07080

    Article  Google Scholar 

  • Gouretski VV, Koltermann KP (2007) How much is the ocean really warming? Geophys Res Lett 34:L01610. doi:10.1029/2006GL027834

    Article  Google Scholar 

  • Gouretski VV, Reseghetti F (2010) On depth and temperature biases in bathythermograph data: development of a new correction scheme based on analysis of global ocean database. Deep-Sea Res 57:812–833

    Article  Google Scholar 

  • Ishii M, Kimoto M (2009) Revaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr 65:287–299. doi:10.1007/s10872-009-0027-7

    Article  Google Scholar 

  • Johnson GC, Lyman JM, Willis JK, Levitus S, Boyer T, Antonov J, Palmer MD, Good SA (2011) Global oceans: ocean heat content. In: Blunden J, Arndt DS, Baringer MO (eds) State of the climate in 2010, Bull Am Meteorol Soc 92:6:S81–S84. doi:10.1175/1520-0477-92.6.S1

  • Katsman C, van Oldenborgh GJ (2011) Tracing the upper ocean’s “missing heat”. Geophys Res Lett 38:L14610. doi:10.1029/2011GL048417

    Article  Google Scholar 

  • Levitus S, Antonov J, Boyer T, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2007 in light of recently revealed instrumentation problems. Geophys Res Lett 36:L07608. doi:10.1029/2008GL037155

    Article  Google Scholar 

  • Loeb NG, Wielicki BA, Doelling DR, Smith GL, Keyes DF, Kato S, Manalo‐Smith N, Wong T (2009) Toward optimal closure of the earth’s top‐of‐atmosphere radiation budget. J Clim 22:748–766. doi:10.1175/2008JCLI2637.1

    Article  Google Scholar 

  • Lyman J, Johnson G (2008) Estimating annual global upper ocean heat content anomalies despite irregular in situ ocean sampling. J Clim 21:5629–5641. doi:10.1175/2008JCLI2259.1

    Article  Google Scholar 

  • Lyman J, Good S, Gouretski V, Ishii M, Johnson G, Palmer M, Smith D, Willis J (2010) Robust warming of the global upper ocean. Nature 465:334–337. doi:10.1038/nature09043

    Article  Google Scholar 

  • Meehl G, Arblaster J, Fasullo J, Hu A, Trenberth K (2011) Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Clim Change 1:360–364. doi:10.1038/nclimate1229

    Article  Google Scholar 

  • Palmer MD, McNeall DJ, Dunstone NJ (2011) Importance of the deep ocean for estimating decadal changes in earth’s radiation balance. Geophys Res Lett 38:L13707. doi:10.1029/2011GL047835

    Article  Google Scholar 

  • Purkey SG, Johnson GC (2010) Warming of global abyssal and deep southern ocean between the 1990s and the 2000s: contributions to global heat and sea level rise budgets. J Clim 23:6336–6351. doi:10.1175/2010JCLI3682.1

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT (2011) Tracking earth’s energy: from El Niño to global warming. Surv Geophys, Accepted. doi:10.1007/s10712-011-9150-2

  • von Schuckmann K, Gaillard F, Traon PYL (2009) Global hydrographic variability patterns during 2003–2008. J Geophys Res 114:C09007. doi:10.1029/2008JC005237

    Article  Google Scholar 

  • Wijffels SE, Willis J, Domingues CM, Barker P, White NJ, Gronell A, Ridgway K, Church JA (2008) Changing expendable bathythermograph fall rates and their impact on estimates of thermosteric sea level rise. J Clim 21:5657–5672. doi:10.1175/2008JCLI2290.1

    Article  Google Scholar 

  • Willis JK, Roemmich D, Cornuelle B (2004) Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J Geophys Res 109:C12036. doi:10.1029/2003JC002260

    Article  Google Scholar 

Download references

Acknowledgments

The bulk of the in situ data used herein was provided through the World Ocean Database 2009 (http://www.nodc.noaa.gov). Float data were collected and made freely available by Argo (a pilot program of the Global Ocean Observing System) and contributing national programs (http://www.argo.net/). Gregory C. Johnson provided helpful comments and insight. The NOAA Climate Program Office and the NOAA Office of Oceanic and Atmospheric Research provided support for this research. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the National Oceanic and Atmospheric Administration. JIMAR contribution number 11–375. PMEL contribution number 3722.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Lyman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyman, J.M. Estimating Global Energy Flow from the Global Upper Ocean. Surv Geophys 33, 387–393 (2012). https://doi.org/10.1007/s10712-011-9167-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-011-9167-6

Keywords

Navigation