Skip to main content
Log in

Clifford structures, bilegendrian surfaces, and extrinsic curvature

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We use Clifford algebras to construct a unified formalism for studying constant extrinsic curvature immersed surfaces in Riemannian and semi-Riemannian 3-manifolds in terms of immersed bilegendrian surfaces in their unitary bundles. As an application, we provide full classifications of both complete and compact immersed bilegendrian surfaces in the unit tangent bundle \({\text {U}}\mathbb {S}^3\) of the 3-sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. CEC-0 surfaces, which also exhibit fascinating geometric phenomena, will not be addressed in this paper.

  2. For applications to hyperbolic geometry and dynamical systems theory, we refer the reader to Labourie’s own work [25, 28]. For applications to general relativity and Teichmüller theory, we refer the reader to [1, 3, 4, 40, 46], and our survey [13]. Recently, in [42,43,44], we showed how Labourie’s ideas yield a complete classification of positively-curved CEC surfaces in 3-dimensional space-forms, subject to a natural completeness condition.

  3. Never more than half-full.

  4. \(\text {O}({{\textbf{b}}})\) has 2 connected components when \({{\textbf{b}}}\) has positive sign, and 4 when \({{\textbf{b}}}\) has negative sign.

  5. Although it is usual in Riemannian geometry to restrict covariant derivatives to subbundles by composing with orthogonal projection, it is in fact sufficient to project along any transverse subbundle, as is standard practice in affine geometry (see, for example, [39]).

References

  1. Barbot, T., Béguin, F., Zeghib, A.: Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes: application to the Minkowski problem in the Minkowski space. Ann. Inst. Fourier 61(2), 511–591 (2011)

    MathSciNet  Google Scholar 

  2. Bianchi, L.: Sulle superficie a curvatura nulla in geometria ellittica. Ann. Mat. Pura Appl. 24, 93–129 (1896)

    Google Scholar 

  3. Bonsante, F., Mondello, G., Schlenker, J.M.: A cyclic extension of the earthquake flow I. Geom. Topol. 17(1), 157–234 (2013)

    MathSciNet  Google Scholar 

  4. Bonsante, F., Mondello, G., Schlenker, J.M.: A cyclic extension of the earthquake flow II. Ann. Sci. Ec. Norm. Supér. 48(4), 811–859 (2015)

    MathSciNet  Google Scholar 

  5. Clifford, W.K.: Preliminary sketch of biquaternons. Proc. Lond. Math. Soc. IV, 381–395 (1873)

    Google Scholar 

  6. Clifford, W.K.: Applications of Grassmann’s extensive algebra. Am. J. Math. 1, 350–358 (1878)

    MathSciNet  Google Scholar 

  7. Clifford, W.K.: On the classification of geometric algebras. In: Tucker, R. (ed.) Mathematical Papers of William Kingdon Clifford. MacMillan, London (1882)

    Google Scholar 

  8. Cruceanu, V., Fortuny, P., Gadea, P.M.: A survey on paracomplex geometry. Rocky Mt. J. Math. 26(1), 83–115 (1996)

    MathSciNet  Google Scholar 

  9. Dajczer, M., Nomizu, K.: On flat surfaces in \(\mathbb{S} ^3\) and \(\mathbb{H} ^3\). In: Hano, J., Morimoto, A., Murakami, S., Okamoto, K., Ozeki, H. (eds.) Manifolds and Lie Groups. Progress in Mathematics, vol. 14. Birkhäuser-Verlag, Basel (1981)

    Google Scholar 

  10. Enomoto, K.: The Gauss image of flat surfaces in \(\mathbb{R} ^4\). Kodai Math. J. 9, 19–32 (1986)

    MathSciNet  Google Scholar 

  11. Enomoto, K.: Global properties of the Gauss image of flat surfaces in \(\mathbb{R} ^4\). Kodai Math. J. 10, 272–284 (1987)

    MathSciNet  Google Scholar 

  12. Enomoto, K., Kitigawa, Y., Weiner, J.L.: A rigidity theorem for the Clifford tori in \(\mathbb{S} ^3\). Proc. Am. Math. Soc. 124, 265–268 (1996)

    Google Scholar 

  13. Fillastre, F., Smith, G.: Group actions and scattering problems in Teichmüller theory. Handbook of Group Actions IV. Advanced Lectures in Mathematics 40, 359–417 (2018)

    Google Scholar 

  14. Gálvez, J.A., Mártinez, A., Milán, F.: Flat surfaces in the hyperbolic 3-space. Math. Ann. 316(3), 419–435 (2000)

    MathSciNet  Google Scholar 

  15. Gálvez, J.A., Mira, P.: Embedded isolated singularities of flat surfaces in hyperbolic 3-space. Calc. Var. PDE 24, 239–260 (2005)

    MathSciNet  Google Scholar 

  16. Gálvez, J.A., Mira, P.: Isometric immersions of \(\mathbb{R} ^2\) into \(\mathbb{R} ^4\) and perturbation of Hopf tori. Math. Z. 266, 207–227 (2010)

    MathSciNet  Google Scholar 

  17. Garling, D.J.H.: Clifford Algebras: An Introduction. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  18. Goldstein, H.P.: Classical Mechanics. Pearson, Saddle River (2001)

    Google Scholar 

  19. Harvey, F.R., Lawson, H.B.: Pseudoconvexity for the special Lagrangian potential equation. Calc. Var. PDEs 60, 1–37 (2021)

    MathSciNet  Google Scholar 

  20. Hitchin, N.J.: The moduli space of special lagrangian submanifolds. Annali della Scuola Normale Superiore de Pisa, Classe de Scienze 4\({}^{\text{e}}\) série 25(3–4), 503–515 (1997)

  21. Hitchin, N.J.: The moduli space of complex Lagrangian submanifolds. Asian J. Math. 3(1), 77–92 (1999)

    MathSciNet  Google Scholar 

  22. Kitigawa, Y.: Periodicity of the asymptotic curves in flat tori in \(\mathbb{S} ^3\). J. Math. Soc. Japan 40, 457–476 (1988)

    MathSciNet  Google Scholar 

  23. Kokubu, M., Umehara, M., Yamada, K.: Flat fronts in hyperbolic 3-space. Pac. J. Math. 216, 149–175 (2004)

    MathSciNet  Google Scholar 

  24. Kokubu, M., Rossman, W., Saji, K., Umehara, M., Yamada, K.: Singularities of flat fronts in hyperbolic 3-space. Pac. J. Math. 221, 303–351 (2005)

    MathSciNet  Google Scholar 

  25. Labourie, F.: Métriques prescrites sur le bord des variétés hyperboliques de dimension 3. J. Differ. Geom. 35(3), 609–626 (1992)

    Google Scholar 

  26. Labourie F.: Exemples de courbes pseudo-holomorphes en géométrie riemannienne. In: Holomorphic Curves in Symplectic Geometry. Progress in Mathematics, vol. 117. Birkhäuser (1994)

  27. Labourie, F.: Problèmes de Monge-Ampère, courbes pseudo-holomorphes et laminations. Geom. Funct. Anal. 7, 496–534 (1997)

    MathSciNet  Google Scholar 

  28. Labourie, F.: Un lemme de Morse pour les surfaces convexes. Invent. Math. 141(2), 239–297 (2000)

    MathSciNet  Google Scholar 

  29. León-Guzmán, M.A., Mira, P., Pastor, J.A.: The space of Lorentzian flat tori in anti de-Sitter 3-space. Trans. AMS 363(12), 6549–6573 (2011)

    MathSciNet  Google Scholar 

  30. Lounesto P.: Clifford Algebras and Spinors. London Mathematical Society Lecture Note Series, vol. 286 (2001)

  31. Lychagin, V.V., Rubtsov, V.N.: Local classification of Monge–Ampère differential equations (Russian). Dokl. Akad. Nauk SSSR 272(1), 34–38 (1983)

    MathSciNet  Google Scholar 

  32. Lychagin, V.V., Rubtsov, V.N., Chekalov, I.V.: A classification of Monge–Ampère equations. Ann. Sci. ENS 26(3), 281–308 (1993)

    Google Scholar 

  33. McDuff, D., Salamon, D.: J-Holomorphic Curves and Symplectic Topology, vol. 52. Colloquium Publications, American Mathematical Society, Providence (2012)

    Google Scholar 

  34. Milnor, T.K.: Harmonic maps and classical surface theory in Minkowski 3-space. Trans. AMS 280(1), 161–185 (1983)

    MathSciNet  Google Scholar 

  35. Pinkall, U.: Hopf tori in \(\mathbb{S} ^3\). Invent. Math. 81, 379–386 (1985)

    MathSciNet  Google Scholar 

  36. Rubtsov, V.N.: Geometry of Monge–Ampère structures. In: Kycia, R.A., et al. (eds.) Nonlinear PDEs, Their Geometry, and Applications. Springer, Berlin (2019)

    Google Scholar 

  37. Saji, K., Umehara, M., Yamada, K.: The geometry of fronts. Ann. Math. 169, 491–529 (2009)

    MathSciNet  Google Scholar 

  38. Sasaki, S.: On complete surfaces with Gaussian curvature zero in the 3-sphere. Colloq. Math. 26, 165–174 (1972)

    MathSciNet  Google Scholar 

  39. Sasaki, S., Nomizu, K.: Affine Differential Geometry: Geometry of Affine Immersions, Cambridge Tracts in Mathematics, vol. 111. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  40. Schlenker, J.M.: Hyperbolic manifolds with convex boundary. Invent. Math. 163, 109–169 (2006)

    MathSciNet  Google Scholar 

  41. Smith, G.: Special Lagrangian curvature. Math. Ann. 355(1), 57–95 (2013)

    MathSciNet  Google Scholar 

  42. Smith, G.: Möbius structures, hyperbolic ends and \(k\)-surfaces in hyperbolic space. In: Ohshika, K., Papadopoulos, A. (eds.) In the Tradition of Thurston, vol. II. Springer, Berlin (2022)

    Google Scholar 

  43. Smith G.: Quaternions, Monge–Ampère structures, and \(k\)-surfaces. arXiv:2210.02664

  44. Smith G.: On quasicomplete \(k\)-surfaces in 3-dimensional space-forms. arXiv:2211.14868

  45. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. IV. Publish or Perish, Berkeley (1977)

    Google Scholar 

  46. Tamburelli, A.: Prescribing metrics on the boundary of anti-de Sitter 3-manifolds. Int. Math. Res. Not. 5, 1281–1313 (2018)

    MathSciNet  Google Scholar 

  47. Volkert K.: Space forms: a history. Bulletin of the Manifold Atlas (2013)

  48. Weiner, J.L.: Flat tori in \(\mathbb{S} ^3\) and their Gauss maps. Proc. Lond. Math. Soc. 62, 54–76 (1991)

    Google Scholar 

  49. Yau, S.T.: Submanifolds with constant mean curvature II. Am. J. Math. 97, 76–100 (1975)

    Google Scholar 

Download references

Acknowledgements

I am grateful to Pablo Mira, Carlos Tomei and Pierre Pansu for helpful comments made to earlier drafts of this paper. I am also grateful to Richard Wentworth and Jean-Marc Schlenker for having invited me to contribute to the volume in which this paper is due to appear, and for assuring me that the proposed topic would genuinely be of interest. I am also grateful to the anonymous reviewer for helpful comments made to an earlier draft of this paper. Finally, of course, I am grateful to François Labourie for having introduced me, all those years ago, to CEC surfaces and the marvels and wonders they conceal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Smith.

Additional information

Dedicated to François Labourie on the occasion of his 60th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Calculating the curvature

A. Calculating the curvature

Let W denote the bundle defined in Sect. 3.3. We now determine certain components of its curvature. The calculation is rather technical and uninformative, and for this reason we have chosen to relegate it to this appendix.

Lemma A.1

At every point (xy) of M, and for every vector \(\xi \in W_{(x,y)}\) such that \(\pi _1(\xi )\) and \(\pi _2(\xi )\) are colinear,

$$\begin{aligned} \omega _i(R_{X,J^\eta X}X,J^{\eta } X) = \frac{-\epsilon \Vert (x,y)\Vert _g^2}{2\Vert x\Vert _{{{\textbf{b}}}}^2\Vert y\Vert _{{{\textbf{b}}}}^2}{\hat{g}}(X,I^\eta X){\hat{g}}(X,X). \end{aligned}$$
(A.1)

Proof

Indeed, let \(\lambda _x\) and \(\lambda _y\) denote respectively the \({{\textbf{b}}}\)-lengths of x and y. The normal bundle of W is generated by the vector fields

$$\begin{aligned} N_1:= \frac{1}{\lambda _x}(x,0),\ N_2:= \frac{1}{\lambda _y}(y,0),\ N_3:= \frac{1}{\lambda _x}(0,x),\ \text {and}\ N_4:= \frac{1}{\lambda _y}(0,y). \end{aligned}$$

For X and Y vector fields taking values in W, the respective shape operators of these normals are

$$\begin{aligned} B_1(X,Y)&= -\frac{1}{\lambda _x}{{\textbf{b}}}(\pi _1(X),\pi _1(Y)) ,\\ B_2(X,Y)&= -\frac{1}{\lambda _y}{{\textbf{b}}}(\pi _2(X),\pi _1(Y)) ,\\ B_3(X,Y)&= -\frac{\eta }{\lambda _x}{{\textbf{b}}}(\pi _1(X),\pi _2(Y)) ,\ \text {and}\\ B_4(X,Y)&= -\frac{\eta }{\lambda _y}{{\textbf{b}}}(\pi _2(X),\pi _2(Y)). \end{aligned}$$

We now suppose that \(\pi _1(X)\) and \(\pi _2(X)\) are colinear. Furthermore, we recall that

$$\begin{aligned} \pi _1\circ J^\eta&= \eta A\circ \pi _2 ,\\\pi _1\circ K&= A\pi _1,\\\pi _2\circ J^\eta&= A\circ \pi _1 ,\ \text {and}\\\pi _2\circ K&= -A\pi _2. \end{aligned}$$

Recall also that

$$\begin{aligned} A^2 = -\epsilon \text {Id}, \end{aligned}$$

where \(\epsilon \) here denotes the sign of \({{\textbf{b}}}\). For each i, let \(\sigma _i\) denote the component of curvature arising from \(B_i\). We obtain

$$\begin{aligned} \sigma _1(X,J^\eta X,X,KX)&=-\frac{1}{\Vert x\Vert _{{\textbf{b}}}^2}{{\textbf{b}}}(\pi _1(X),\pi _1(X)){{\textbf{b}}}(\pi _1(J^\eta X),\pi _1(KX))\\&=-\frac{\eta }{\Vert x\Vert _{{\textbf{b}}}^2}{{\textbf{b}}}(\pi _1(X),\pi _1(X)){{\textbf{b}}}(A\pi _2(X),A\pi _1(X))\\&=-\frac{\epsilon \eta }{\Vert x\Vert _{{\textbf{b}}}^2}{{\textbf{b}}}(\pi _1(X),\pi _1(X)){{\textbf{b}}}(\pi _1(X),\pi _2(X)). \end{aligned}$$

In a similar manner, we obtain

$$\begin{aligned} \sigma _2(X,J^\eta ,X,KX)&= -\frac{\epsilon }{\Vert y\Vert _{{\textbf{b}}}^2}{{\textbf{b}}}(\pi _1(X),\pi _1(X)){{\textbf{b}}}(\pi _2(X),\pi _1(X)),\\ \sigma _3(X,J^\eta ,X,KX)&= \frac{\epsilon }{\Vert x\Vert _{{\textbf{b}}}^2}{{\textbf{b}}}(\pi _1(X),\pi _2(X)){{\textbf{b}}}(\pi _2(X),\pi _2(X)),\ \text {and}\\ \sigma _4(X,J^\eta ,X,KX)&= \frac{\epsilon \eta }{\Vert y\Vert _{{\textbf{b}}}^2}{{\textbf{b}}}(\pi _2(X),\pi _2(X)){{\textbf{b}}}(\pi _1(X),\pi _1(X)). \end{aligned}$$

Combining these identities yields

$$\begin{aligned} g(R_{X,J^\eta X}X,KX)&= {{\textbf{b}}}(\pi _1(X),\pi _2(X))\bigg (-\frac{\epsilon \eta }{\Vert x\Vert _{{\textbf{b}}}^2} {\hat{g}}(X,X)-\frac{\epsilon }{\Vert y\Vert _{{\textbf{b}}}^2}{\hat{g}}(X,X)\bigg )\\&= \frac{-\epsilon \Vert (x,y)\Vert _g^2}{2\Vert x\Vert _{{\textbf{b}}}^2\Vert y\Vert _{{\textbf{b}}}^2}{\hat{g}}(X,I^\eta X){\hat{g}}(X,X), \end{aligned}$$

as desired.\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, G. Clifford structures, bilegendrian surfaces, and extrinsic curvature. Geom Dedicata 218, 18 (2024). https://doi.org/10.1007/s10711-023-00855-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-023-00855-2

Keywords

Mathematics Subject Classification

Navigation