On projective and affine equivalence of sub-Riemannian metrics

  • Frédéric JeanEmail author
  • Sofya Maslovskaya
  • Igor Zelenko
Original Paper


Consider a smooth connected manifold M equipped with a bracket generating distribution D. Two sub-Riemannian metrics on (MD) are said to be projectively (resp. affinely) equivalent if they have the same geodesics up to reparameterization (resp. up to affine reparameterization). A sub-Riemannian metric g is called rigid (resp. conformally rigid) with respect to projective/affine equivalence, if any sub-Riemannian metric which is projectively/affinely equivalent to g is constantly proportional to g (resp. conformal to g). In the Riemannian case the local classification of projectively (resp. affinely) equivalent metrics was done in the classical work (Levi-Civita in Ann Mat Ser 2a 24:255–300, 1896; resp. Eisenhart in Trans Am Math Soc 25(2):297–306, 1923). In particular, a Riemannian metric which is not rigid with respect to one of the above equivalences satisfies the following two special properties: its geodesic flow possesses a collection of nontrivial integrals of special type and the metric induces certain canonical product structure on the ambient manifold. The only proper sub-Riemannian cases to which these classification results were extended so far are sub-Riemannian metrics on contact and quasi-contact distributions (Zelenko in J Math Sci (NY) 135(4):3168–3194, 2006). The general goal is to extend these results to arbitrary sub-Riemannian manifolds. In this article we establish two types of results toward this goal: if a sub-Riemannian metric is not conformally rigid with respect to the projective equivalence, then, first, its flow of normal extremals has at least one nontrivial integral quadratic on the fibers of the cotangent bundle and, second, the nilpotent approximation of the underlying distribution at any point admits a product structure. As a consequence we obtain two types of genericity results for rigidity: first, we show that a generic sub-Riemannian metric on a fixed pair (MD) is conformally rigid with respect to projective equivalence. Second, we prove that, except for special pairs (mn), for a generic distribution D of rank m on an n-dimensional manifold, every sub-Riemannian metric on D is conformally rigid with respect to the projective equivalence. For the affine equivalence in both genericity results conformal rigidity can be replaced by usual rigidity.


Sub-Riemannian geometry Riemannian geometry Equivalence of metrics Jacobi curves Geodesics 



  1. 1.
    Agrachev, A., Barilari, D., Boscain, U.: Introduction to Riemannian and sub-Riemannian geometry. Lecture Notes., preprint SISSA 09/2012/M. Version. 17 Nov 2017
  2. 2.
    Agrachev, A., Barilari, D., Rizzi, L.: Curvature: a variational approach. Mem. Amer. Math. Soc. 256(1225), v+142 (2018)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Agrachev, A., Gamkrelidze, R.: Feedback-invariant optimal control theory-I. Regular extremals. J. Dyn. Control Syst. 3(3), 343–389 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Agrachev, A., Zelenko, I.: Geometry of Jacobi curves-I. J. Dyn. Control Syst. 8(1), 93–140 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bellaïche, A.: The tangent space in sub-Riemannian geometry. In: Bellaïche, A., Risler, J.-J. (eds.) Sub-Riemannian Geometry. Progress in Mathematics, vol. 144, pp. 1–78. Birkhäuser, Basel (1996)Google Scholar
  6. 6.
    Beltrami, E.: Teoria fondamentale degli spazii di curvatura costante. Annali di matem Ser. 2 2, 232–255 (1869)CrossRefzbMATHGoogle Scholar
  7. 7.
    Benenti, S.: Intrinsic characterization of the variable separation in the Hamilton–Jacobi equation. J. Math. Phys. 38(12), 6578–6602 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Benenti, S.: Separability in Riemannian manifolds. SIGMA Symmetry Integr. Geom. Methods Appl. 12(013), 21 (2016)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Berret, B., Darlot, C., Jean, F., Pozzo, T., Papaxanthis, C., et al.: The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements. PLoS Comput. Biol. Public Libr. Sci. 4(10), e1000194 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chittaro, F., Jean, F., Mason, P.: On the inverse optimal control problems of the human locomotion: stability and robustness of the minimizers. J. Math. Sci. 195, 269–287 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    de Rham, G.: Sur la réductibilité d’un espace de Riemann. Commentarii Mathematici Helvetici Ser. 3 26(1), 328–344 (1952)CrossRefzbMATHGoogle Scholar
  12. 12.
    Dini, U.: Sopra un problema che si presenta nella teoria generale delle rappresentazione geografiche di una superficie su di un’ altra. Annali di matem 2, 269–293 (1870)zbMATHGoogle Scholar
  13. 13.
    Eisenhart, L.P.: Symmetric tensors of the second order whose first covariant derivatives are zero. Trans. Am. Math. Soc. 25(2), 297–306 (1923)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gantmacher, F.: Matrix Theory, vol. 2. American Mathematical Society, Providence (2000)Google Scholar
  15. 15.
    Gauger, M.: On the classification of metabelian Lie algebras. Trans. Am. Math. Soc. 179, 293–329 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hamel, G.: Über die Geometrieen, in denen die Geraden die Kürzesten sind. Math. Ann. 57(2), 231–264 (1903)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jean, F.: Control of Nonholonomic Systems: From Sub-Riemannian Geometry to Motion Planning. Springer Briefs in Mathematics. Springer, Berlin (2014)Google Scholar
  18. 18.
    Jean, F., Maslovskaya, S., Zelenko, I.: Inverse optimal control problem: the sub-Riemannian case. IFAC-PapersOnLine 50, 500–505 (2017)CrossRefGoogle Scholar
  19. 19.
    Kruglikov, B., Matveev, V.: The geodesic flow of a generic metric does not admit nontrivial integrals polynomial in momenta. Nonlinearity 29, 1775–1768 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Levi-Civita, T.: Sulle trasformazioni delle equazioni dinamiche. Ann. Mat. Ser. 2a 24, 255–300 (1896)CrossRefzbMATHGoogle Scholar
  21. 21.
    Matveev, V., Topalov, P.: Geodesic equivalence via Integrability. Geometriae Dedicat 96, 91–115 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tanaka, N.: On differential systems, graded Lie algebras and pseudo-groups. J. Math. Kyoto Univ. 10, 1–82 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zelenko, I.: On the geodesic equivalence of Riemannian metrics and sub-Riemannian metrics on distributions of corank 1. Sovrem. Mat. Prilozh. No. 21, Geom. Zadachi Teor. Upr. 79–105 (2004). J. Math. Sci. (NY) 135(4), 3168–3194 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zelenko, I., Li, C.: Parametrized curves in Lagrange Grassmannians. C. R. Acad. Sci. Paris Ser. I 345(11), 647–652 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zelenko, I., Li, C.: Differential geometry of curves in Lagrange Grassmannians with given Young diagram. Differ. Geom. Appl. 27, 723–742 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Unité de Mathématiques Appliquées, ENSTA ParisTechUniversité Paris-SaclayPalaiseauFrance
  2. 2.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations