Skip to main content
Log in

On Inverse Optimal Control Problems of Human Locomotion: Stability and Robustness of the Minimizers

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In recent papers, models of human locomotion by means of optimal control problems have been proposed. In this paradigm, the trajectories are assumed to be solutions of an optimal control problem whose cost has to be determined. The purpose of the present paper is to analyze the class of optimal control problems defined in this way. We prove strong convergence results for their solutions, on the one hand, for perturbations of the initial and final points (stability), and, on the other hand, for perturbations of the cost (robustness).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Agrachev and Yu. L. Sachkov, “Control theory from the geometric viewpoint,” in: Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag, Berlin (2004).

    Google Scholar 

  2. G. Arechavaleta, J.-P. Laumond, H. Hicheur, and A. Berthoz, “Optimizing principles underlying the shape of trajectories in goal oriented locomotion for humans,” in: IEEE/RAS International Conference on Humanoid Robots, Genoa (2006).

  3. G. Arechavaleta, J.-P. Laumond, H. Hicheur, and A. Berthoz, “On the nonholonomic nature of human locomotion,” Autonomous Robots, 25, 25–35 (2008).

    Article  Google Scholar 

  4. G. Arechavaleta, J.-P. Laumond, H. Hicheur, and A. Berthoz, “An optimality principle governing human walking,” IEEE Trans. on Robotics, 24, No. 1, 5–14 (2008).

    Article  Google Scholar 

  5. A. V. Arutyunov and R. B. Vinter, “A simple ‘finite approximations’ proofs of the Pontryagin maximum principle under reduced differentiability hypotheses,” Set-Valued Anal., 12, Nos. 1–2, 5–24 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Bayen, Y. Chitour, F. Jean, and P. Mason, “Asymptotic analysis of an optimal control problem connected to the human locomotion,” in: Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai (2009).

  7. B. Berret, F. Jean, and J.-P. Gauthier, “A biomechanical inactivation principle,” Proc. Steklov Inst. Math., 268, 93–116 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Bonnard and M. Chyba, “Singular trajectories and their role in control theory,” in: Math. Appl., 40, Springer-Verlag, Berlin (2003).

    Google Scholar 

  9. S. Boyd, L. E. Ghaoui, E. Feron, and Balakrishnan V., Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia (1994).

    Book  MATH  Google Scholar 

  10. Y. Chitour, F. Jean, and P. Mason, “Optimal control models of the goal-oriented Human Locomotion,” SIAM J. Control Optim., 50, 147–170 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, New York (1989).

    Book  MATH  Google Scholar 

  12. C. Darlot, J.-P. Gauthier, F. Jean, C. Papaxanthis, and T. Pozzo, “The inactivation principle: Mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements,” PLoS Comput. Biol., 4, No. 10 (2008).

    Google Scholar 

  13. R. Kalman, “When is a linear control system optimal?” J. Basic Eng., 86, 51–60 (1964).

    Article  Google Scholar 

  14. K. Mombaur, A. Truong, and J.-P. Laumond, “From human to humanoid locomotion—an inverse optimal control approach,” Auton. Robots, 28, 369–383 (2010).

    Article  Google Scholar 

  15. A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement learning,” in: Proc. 17th International Conf. on Machine Learning, Morgan Kaufmann, San Francisco (2000), pp. 663–670.

  16. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley-Interscience, New York–London (1962).

    MATH  Google Scholar 

  17. E. Todorov, “Optimal control theory,” in: Bayesian Brain: Probabilistic Approaches to Neural Coding (K. Doya et al., eds.), MIT Press, Cambridge (2006), pp. 269–298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. C. Chittaro.

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 82, Nonlinear Control and Singularities, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chittaro, F.C., Jean, F. & Mason, P. On Inverse Optimal Control Problems of Human Locomotion: Stability and Robustness of the Minimizers. J Math Sci 195, 269–287 (2013). https://doi.org/10.1007/s10958-013-1579-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-013-1579-z

Keywords

Navigation