Skip to main content

Advertisement

Log in

Rigidity for the isoperimetric inequality of negative effective dimension on weighted Riemannian manifolds

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We study, on a weighted Riemannian manifold of \(\hbox {Ric}_{N} \ge K > 0\) for \(N < -1\), when equality holds in the isoperimetric inequality. Our main theorem asserts that such a manifold is necessarily isometric to the warped product \({\mathbb {R}} \times _{\cosh (\sqrt{K/(1-N)}t)} \Sigma ^{n-1}\) of hyperbolic nature, where \(\Sigma ^{n-1}\) is an \((n-1)\)-dimensional manifold with lower weighted Ricci curvature bound and \({\mathbb {R}}\) is equipped with a hyperbolic cosine measure. This is a similar phenomenon to the equality condition of Poincaré inequality. Moreover, every isoperimetric minimizer set is isometric to a half-space in an appropriate sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren Jr., F.J.: Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Am. Math. Soc. 4, (165) (1976)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Mondino, A.: Gaussian-type Isoperimetric Inequalities in RCD\((K,\infty )\) probability spaces for positive \(K\). Rend. Lincei Mat. Appl. 27, 497–514 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  4. Bakry, D., Ledoux, M.: Levy–Gromov’s isoperimetric inequality for an infinite dimensional diffusion generator. Invent. Math. 123(1), 159–281 (1996)

    Article  MATH  Google Scholar 

  5. Barchiesi, M., Brancolini, A., Julin, V.: Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality. Ann. Probab. 45(2), 668–697 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bayle, V.: Propriétés de concavité du profil isopérimétrique et applications, PhD thesis, Institut Joseph Fourier, Grenoble (2004)

  7. Bobkov, S.: Extremal properties of half-spaces for log-concave distributions. Ann. Probab. 24(1), 35–48 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bouyrie, R.: Rigidity phenomenons for an infinite dimension diffusion operator and cases of near equality in the Bakry–Ledoux isoperimetric comparison theorem Preprint (2017). arXiv:1708.07203

  9. Cavalletti, F., Maggi, F., Mondino, A.: Quantitative isoperimetry a la Levy-Gromov. Preprint (2017). arXiv:1707.04326

  10. Cavalletti, F., Mondino, A.: Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds. Invent. Math. 208(3), 803–849 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng, X., Zhou, D.: Eigenvalues of the drifted Laplacian on complete metric measure spaces. Commun. Contemp. Math 19, 1650001 (2017). 17 pp

    Article  MathSciNet  MATH  Google Scholar 

  12. Cianchi, A., Fusco, N., Maggi, F., Pratelli, A.: On the isoperimetric deficit in Gauss space. Am. J. Math. 133(1), 131–186 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eldan, R.: A two-sided estimate for the Gaussian noise stability deficit. Invent. Math. 201, 561–624 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feldman, M., McCann, R.J.: Monge’s Riemannian manifold. Trans. Am. Math. Soc. 354(4), 1667–1697 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gigli, N., Ketterer, C., Kuwada, K., Ohta, S.: Rigidity for the spectral gap on RCD\((K,\infty )\)-spaces. arXiv:1709.04017

  16. Gromov, M.: Paul Levy’s Isoperimetric Inequality. Preprint IHES (1980)

  17. Gromov, M. (ed.): Paul Levy’s isoperimetric inequality. In: Metric Structures for Riemannian and Non-Riemannian Spaces, Appendix C. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA (2007)

  18. Ketterer, C.: Cones over metric measure spaces and the maximal diameter theorem. Journal de Mathmatiques Pures et Appliques (9) 103, 1228–1275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Klartag, B.: Needle decompositions in Riemannian geometry. Mem. Amer. Math. Soc. 249, 1180 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Kolesnikov, A.V., Milman, E.: Brascamp-Lieb-type inequalities on weighted Riemannian manifolds with boundary. J. Geom. Anal. 27, 1680–1702 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169, 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mai, C.H.: On Riemannian manifolds with positive weighted Ricci curvature of negative effective dimension. Kyushu J. Math. 72(2), (2019)

  23. Milman, E.: Sharp isoperimetric inequalities and model spaces for the Curvature-Dimension-Diameter condition. J. Eur. Math. Soc. 17(5), 1041–1078 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Milman, E.: Beyond traditional Curvature-Dimension I: new model spaces for isoperimetric and concentration inequalities in negative dimension. Trans. Am. Math. Soc. 369, 3605–3637 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Morgan, F.: Geometric Measure Theory, 5th edn. Academic Press, Cambridge (2016)

    MATH  Google Scholar 

  26. Mossel, E., Neeman, J.: Robust dimension free isoperimetry in Gaussian space. Ann. Probab. 43, 971–991 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Obata, M.: Certain conditions for a riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 14, 333–340 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ohta, S.: Finsler interpolation inequalities. Calc. Var. Part. Differ. Equ. 36, 211–249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ohta, S.: Needle decompositions and isoperimetric inequalities in Finsler geometry. J. Math. Soc. Jpn. 70(2), 651–693 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ohta, S.: \((K, N)\)-convexity and the curvature-dimension condition for negative \(N\). J. Geom. Anal. 26, 2067–2096 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196, 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sturm, K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196, 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. von Renesse, M.-K., Sturm, K.-T.: Transport inequalities, gradient estimates, entropy and Ricci curvature. Commun. Pure Appl. Math. 58, 923–940 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wylie, W.: A warped product version of the Cheeger–Gromoll splitting theorem. Trans. Am. Math. Soc. 286, 6661–6681 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank my supervisor, Professor Shin-ichi Ohta, for the kind guidance, encouragement and advice he has provided throughout my time working on this paper. I also would like to thank Professor Frank Morgan and Professor Emanuel Milman for giving valuable comments on the reference part of the first draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Hung Mai.

Appendix A

Appendix A

In the appendix, we will prove that \(I_{K,N,D}(\theta ) > I_{K,N,\infty }(\theta )\) for all \(\theta \in (0,1)\), \(N < 0\) and \(D < \infty \). We abbreviate in this appendix \(I(\theta ) := I_{K,N,\infty }(\theta )\).

Lemma A.1

\(K_{3,D}(\theta ) > I_{K,N,\infty }(\theta )\) for all \(\theta \in (0,1)\), \(N < 0\) and \(D < \infty \).

Proof

By the definitions of \(c(\theta )\),\(d_{3}(\theta )\) in \(\S \)2.2, we have \(1 = I(\theta )c'(\theta ) = K_{3,D}(\theta )d_{3}'(\theta )\). Therefore

$$\begin{aligned} I'(\theta )= & {} (N-1)\sqrt{\sigma }\tanh (\sqrt{\sigma }c(\theta )),\\ K_{3,D}'(\theta )= & {} (N-1)\sqrt{\sigma }. \end{aligned}$$

Put \(h(\theta ) = K_{3,D}(\theta )-I(\theta )\). Since \(|\tanh x| < 1\), we have \(h'(\theta ) < 0\). Hence \(h(\theta ) \ge h(1) = \frac{e^{(N-1)\sqrt{\sigma }D}}{\int _{0}^{D} e^{(N-1)\sqrt{\sigma }s}ds} > 0\). \(\square \)

Lemma A.2

\(K_{2,D}(\theta ) > I_{K,N,\infty }(\theta )\) for all \(\theta \in (0,1)\), \(N < 0\) and \(D < \infty \).

Proof

Put \(\varphi (t) := \sinh ^{N-1}(\sqrt{\sigma }t)\). For \(t>0\), we have

$$\begin{aligned} \varphi '(t) = (N-1)\sqrt{\sigma }\varphi (t)\coth (\sqrt{\sigma }t) < 0. \end{aligned}$$

Fix \(\xi >0\) and set \(g_{\xi }(\theta ) := \frac{\varphi (d_{2,\xi }(\theta ))}{\int _{\xi }^{\xi + D} \varphi (s)ds} > 0\). By the definitions of \(c(\theta )\), \(d_{2,\xi }(\theta )\), we have \(1 = I(\theta )c'(\theta ) = g_{\xi }(\theta )d_{2,\xi }'(\theta )\). Therefore

$$\begin{aligned} I'(\theta )= & {} (N-1)\sqrt{\sigma }\tanh (\sqrt{\sigma }c(\theta )),\\ g_{\xi }'(\theta )= & {} (N-1)\sqrt{\sigma }\coth (\sqrt{\sigma }d_{2,\xi }(\theta )). \end{aligned}$$

Put \(h_{\xi }(\theta ) = g_{\xi }(\theta )-I(\theta )\). Since \(|\tanh x| < 1\) and \(\coth y > 1\) for \(y>0\), \(h_{\xi }(\theta ) \ge h_{\xi }(1)\). Note that \(I(1) = 0\), hence \(h_{\xi }(\theta ) > 0\) for each \(\xi > 0\). Fix \(\theta \) and put \(m(\xi ) = \frac{\int _{\xi }^{\xi + D} \varphi (s)ds}{\varphi (\xi +D)} > 0\). Denote \(\cosh (\sqrt{\sigma } D)\), \(\sinh (\sqrt{\sigma } D)\) by \(c_{D}\) and \(s_{D}\). We have

$$\begin{aligned} \lim _{\xi \rightarrow \infty } m(\xi )&= \lim _{\xi \rightarrow \infty } \frac{\varphi (\xi +D)-\varphi (\xi )}{\varphi '(\xi +D)} = \lim _{\xi \rightarrow \infty }\frac{\varphi (\xi +D)}{\varphi '(\xi +D)} - \lim _{\xi \rightarrow \infty } \frac{\varphi (\xi )}{\varphi (\xi +D)} \frac{\varphi (\xi +D)}{\varphi '(\xi +D)}\\&= \frac{1}{(N-1)\sqrt{\sigma }}-\frac{1}{(N-1)\sqrt{\sigma }}\lim _{\xi \rightarrow \infty } \frac{\varphi (\xi )}{\varphi (\xi +D)}\\&= \frac{1}{(N-1)\sqrt{\sigma }} - \frac{1}{(N-1)\sqrt{\sigma }}\lim _{\xi \rightarrow \infty } \big ( c_{D} + s_{D}\coth (\sqrt{\sigma }\xi )\big )^{1-N}\\&= \frac{1}{(N-1)\sqrt{\sigma }} \big (1- (c_{D}+s_{D})^{1-N}\big ). \end{aligned}$$

Note that \(\varphi (d_{2,\xi }(\theta )) \ge \varphi (\xi + D)\), hence

$$\begin{aligned} \lim _{\xi \rightarrow \infty } h_{\xi }(\theta ) \ge \lim _{\xi \rightarrow \infty } h_{\xi }(1) \ge \lim _{\xi \rightarrow \infty } (m(\xi ))^{-1} > 0. \end{aligned}$$

Now we consider the other direction \(\lim _{\xi \rightarrow 0} h_{\xi }(\theta )\). We also define \({\bar{d}}(\xi )\) as

$$\begin{aligned} \theta = \frac{\int _{\xi }^{{\bar{d}}(\xi )} (\sqrt{\sigma }s)^{N-1}ds}{\int _{\xi }^{\xi +D} (\sqrt{\sigma }s)^{N-1}ds} = \frac{{\bar{d}}^{N}_{\xi }-\xi ^{N}}{(\xi +D)^N-\xi ^{N}}. \end{aligned}$$

Put \(f(\Delta ) := \frac{\int _{\xi }^{\xi +\Delta } \varphi (s)ds}{\int _{\xi }^{\xi +\Delta } (\sqrt{\sigma }s)^{N-1}ds} \ge 0\). We have

$$\begin{aligned} f'(\Delta )&= f(\Delta )\bigg ( \frac{\varphi (\xi +\Delta )}{\int _{\xi }^{\xi +\Delta } \varphi (s)ds} - \frac{(\sqrt{\sigma }(\xi +\Delta ))^{N-1}}{\int _{\xi }^{\xi +\Delta } (\sqrt{\sigma }s)^{N-1}ds}\bigg )\\&= \frac{f(\Delta )(\sqrt{\sigma }(\xi +\Delta ))^{N-1}}{\int _{\xi }^{\xi +\Delta } \varphi (s)ds}\bigg ( \frac{\varphi (\xi +\Delta )}{(\sqrt{\sigma }(\xi +\Delta ))^{N-1}} - \frac{\int _{\xi }^{\xi +\Delta } \varphi (s)ds}{\int _{\xi }^{\xi +\Delta } (\sqrt{\sigma }s)^{N-1}ds} \bigg ). \end{aligned}$$

By Cauchy’s mean value theorem, there exists \(c\in (\xi ,\xi +\Delta )\) such that \(\frac{\int _{\xi }^{\xi +\Delta } \varphi (s)ds}{\int _{\xi }^{\xi +\Delta } (\sqrt{\sigma }s)^{N-1}ds} = \frac{\varphi (c)}{(\sqrt{\sigma }c)^{N-1}}\). Note that \(\frac{\sinh x}{x}\) is a monotone increasing function when \(x > 0\), we have \(\frac{\varphi (x)}{(\sqrt{\sigma }x)^{N-1}}\) is monotone decreasing. Hence \(f'(\Delta ) < 0\) and f is monotone decreasing. Therefore

$$\begin{aligned} \frac{\int _{\xi }^{{\bar{d}}(\xi )} (\sqrt{\sigma }s)^{N-1}ds}{\int _{\xi }^{d_{2,\xi }(\theta )} \varphi (s)ds} = \frac{\int _{\xi }^{\xi + D} (\sqrt{\sigma }s)^{N-1}ds}{\int _{\xi }^{\xi +D} \varphi (s)ds} \ge \frac{\int _{\xi }^{d_{2,\xi }(\theta )} (\sqrt{\sigma }s)^{N-1}ds}{\int _{\xi }^{d_{2,\xi }(\theta )} \varphi (s)ds}. \end{aligned}$$

Thus we can deduce that \(d_{2,\xi }(\theta ) \le {\bar{d}}(\xi ) = \big ( \theta (\xi +D)^{N} + (1-\theta )\xi ^{N}\big )^{1/N}\). Hence

$$\begin{aligned} \lim _{\xi \rightarrow 0_{+}} h_{\xi }(\theta )&\ge \lim _{\xi \rightarrow 0_{+}} \frac{\varphi ({\bar{d}}(\xi ))}{\int _{\xi }^{\xi + D} \varphi (s)ds} - I(\theta ) \\ {}&= \lim _{\xi \rightarrow 0_{+}} \frac{(N-1)\sqrt{\sigma }\varphi ({\bar{d}}(\xi ))\coth ({\sqrt{\sigma }} {\bar{d}}(\xi )){\bar{d}}'(\xi )}{\varphi (\xi +D)-\varphi (\xi )} - I(\theta )\\&= \lim _{\xi \rightarrow 0_{+}} \frac{(N-1)\sqrt{\sigma }^{N}{\bar{d}}^{N-1}(\xi ){\bar{d}}'(\xi )}{\sinh ({\sqrt{\sigma }}{\bar{d}}(\xi ))\big (\varphi (D)-\varphi (\xi )\big )} - I(\theta )\\&= \lim _{\xi \rightarrow 0_{+}} \frac{1}{\sinh ({\sqrt{\sigma }}{\bar{d}}(\xi ))}\cdot \frac{(N-1)\sqrt{\sigma }^{N}\big (\theta (\xi +D)^{N-1} + (1-\theta )\xi ^{N-1}\big )}{\varphi (D)-\varphi (\xi )} - I(\theta )\\ {}&= \lim _{\xi \rightarrow 0_{+}} \frac{1}{\sinh ({\sqrt{\sigma }}{\bar{d}}(\xi ))}\cdot \frac{(1-N) \sqrt{\sigma }\big (\theta (\xi +D)^{N-1} + (1-\theta )\xi ^{N- 1}\big )}{\xi ^{N-1}}- I(\theta )\\&= \infty . \end{aligned}$$

Therefore \(K_{2,D}(\theta ) - I(\theta ) = \inf _{\xi>0} h_{\xi }(\theta ) > 0\). \(\square \)

Lemma A.3

\(K_{1,D}(\theta ) > I_{K,N,\infty }(\theta )\) for all \(\theta \in (0,1)\), \(N < 0\) and \(D < \infty \).

Proof

Put \(\varphi (t) := \cosh ^{N-1}(\sqrt{\sigma }t)\). We have

$$\begin{aligned} \varphi '(t) = (N-1)\sqrt{\sigma }\varphi (t)\tanh (\sqrt{\sigma }t). \end{aligned}$$

Put \(g_{\xi }(\theta ) := \frac{\varphi (d_{1,\xi }(\theta ))}{\int _{\xi }^{\xi + D} \varphi (s)ds}\). By the definitions of \(c(\theta )\),\(d_{1.\xi }(\theta )\) in \(\S \)2.2, we have \(1 = I(\theta )c'(\theta ) = g_{\xi }(\theta )d_{1,\xi }'(\theta )\). Therefore

$$\begin{aligned} I'(\theta )= & {} (N-1)\sqrt{\sigma }\tanh (\sqrt{\sigma }c(\theta )),\\ g_{\xi }'(\theta )= & {} (N-1)\sqrt{\sigma }\tanh (\sqrt{\sigma }d_{1,\xi }(\theta )). \end{aligned}$$

Put \(h_{\xi }(\theta ) = g_{\xi }(\theta )-I(\theta )\). Since \(\tanh (x)\) is monotone increasing we have \(h_{\xi }'(\theta _{0}) = 0\) if and only if \(c(\theta _{0}) = d_{1,\xi }(\theta _{0})\). Since \(I(0) = I(1) = 0\), we can deduce \(h_{\xi }(\theta ) \ge \min \{g_{\xi }(0),g_{\xi }(1), h_{\xi }(\theta _{0})\) where \(c(\theta _{0}) = d_{1,\xi }(\theta _{0})\}\).

Put \(m_{0}(\xi ) := (g_{\xi }(0))^{-1} = \frac{\int _{\xi }^{\xi + D} \varphi (s)ds}{\varphi (\xi )}\). We have

$$\begin{aligned} m'_{0}(\xi )&= \frac{\varphi (\xi +D)-\varphi (\xi )}{\varphi (\xi )} - m_{0}(\xi )\frac{\varphi '(\xi )}{\varphi (\xi )} \\&= m_{0}(\xi ) \bigg ( \frac{\varphi (\xi +D)-\varphi (\xi )}{\int _{\xi }^{\xi + D} \varphi (s)ds} - (N-1)\sqrt{\sigma }\tanh (\sqrt{\sigma }\xi )\bigg ). \end{aligned}$$

By Cauchy’s mean value theorem, there exists \(c\in (\xi ,\xi +D)\) such that \(\frac{\varphi (\xi +D)-\varphi (\xi )}{\int _{\xi }^{\xi + D} \varphi (s)ds} = \frac{\varphi '(c)}{\varphi (c)} = (N-1)\sqrt{\sigma }\tanh (\sqrt{\sigma }c)\). Note that \(\tanh x\) is a monotone increasing function, we have \(m_{0}(\xi )\) is a monotone decreasing function. Hence \(g_{\xi }(0) \ge \lim _{\xi \rightarrow -\infty } \frac{\varphi (\xi )}{\int _{\xi }^{\xi + D} \varphi (s)ds}\). Denote \(\cosh (\sqrt{\sigma } D)\), \(\sinh (\sqrt{\sigma } D)\) by \(c_{D}\) and \(s_{D}\). We have

$$\begin{aligned} \lim _{\xi \rightarrow -\infty } m_{0}(\xi )&= \lim _{\xi \rightarrow -\infty } \frac{\varphi (\xi +D)-\varphi (\xi )}{\varphi '(\xi )} = \lim _{\xi \rightarrow -\infty } \frac{\varphi (\xi + D)}{\varphi (\xi )} \frac{\varphi (\xi )}{\varphi '(\xi )} - \lim _{\xi \rightarrow -\infty }\frac{\varphi (\xi )}{\varphi '(\xi )}\\&= \frac{-1}{(N-1)\sqrt{\sigma }}\lim _{\xi \rightarrow -\infty } \frac{\varphi (\xi + D)}{\varphi (\xi )} - \frac{-1}{(N-1)\sqrt{\sigma }}\\&= \frac{-1}{(N-1)\sqrt{\sigma }}\lim _{\xi \rightarrow -\infty } \big ( c_{D} + s_{D}\tanh (\sqrt{\sigma }\xi )\big )^{N-1} - \frac{-1}{(N-1)\sqrt{\sigma }}\\&= \frac{-1}{(N-1)\sqrt{\sigma }} \big ( (c_{D}-s_{D})^{N-1} - 1 \big ). \end{aligned}$$

Hence \(g_{\xi }(0) \ge \displaystyle \frac{(1-N)(\sqrt{\sigma })}{( (c_{D}-s_{D})^{N-1} - 1 )} > 0\).

On the other hand, put \(m_{1}(\xi ) := (g(1))^{-1} = \frac{\int _{\xi }^{\xi + D} \varphi (s)ds}{\varphi (\xi +D)}\). We have

$$\begin{aligned} m'_{1}(\xi )&= \frac{\varphi (\xi +D)-\varphi (\xi )}{\varphi (\xi +D)} - m_{1}(\xi )\frac{\varphi '(\xi +D)}{\varphi (\xi +D)} \\&= m_{1}(\xi ) \bigg ( \frac{\varphi (\xi +D)-\varphi (\xi )}{\int _{\xi }^{\xi + D} \varphi (s)ds} - (N-1)\sqrt{\sigma }\tanh (\sqrt{\sigma }(\xi +D)\bigg ). \end{aligned}$$

By Cauchy’s mean value theorem, there exists \(c\in (\xi ,\xi +D)\) such that \(\frac{\varphi (\xi +D)-\varphi (\xi )}{\int _{\xi }^{\xi + D} \varphi (s)ds} = \frac{\varphi '(c)}{\varphi (c)} = (N-1)\sqrt{\sigma }\tanh (\sqrt{\sigma }c)\). Note that \(\tanh x\) is a monotone increasing function, we have \(m_{1}(\xi )\) is a monotone increasing function. Hence \(g_{\xi }(1) \ge \lim _{\xi \rightarrow \infty } \frac{\int _{\xi }^{\xi + D} \varphi (s)ds}{\varphi (\xi +D)}.\) We have

$$\begin{aligned} \lim _{\xi \rightarrow \infty } m_{1}(\xi )&= \lim _{\xi \rightarrow \infty } \frac{\varphi (\xi +D)-\varphi (\xi )}{\varphi '(\xi +D)} = \lim _{\xi \rightarrow \infty }\frac{\varphi (\xi +D)}{\varphi '(\xi +D)} - \lim _{\xi \rightarrow \infty } \frac{\varphi (\xi )}{\varphi (\xi +D)} \frac{\varphi (\xi +D)}{\varphi '(\xi +D)}\\&=\frac{1}{(N-1)\sqrt{\sigma }}-\frac{1}{(N-1)\sqrt{\sigma }}\lim _{\xi \rightarrow \infty } \frac{\varphi (\xi )}{\varphi (\xi +D)}\\&= \frac{1}{(N-1)\sqrt{\sigma }} - \frac{1}{(N-1)\sqrt{\sigma }}\lim _{\xi \rightarrow \infty } \big ( c_{D} + s_{D}\tanh (\sqrt{\sigma }\xi )\big )^{1-N}\\&= \frac{1}{(N-1)\sqrt{\sigma }} \big (1- (c_{D}+s_{D})^{1-N}\big ). \end{aligned}$$

Hence \(g_{\xi }(1) \ge \displaystyle \frac{(N-1)(\sqrt{\sigma })}{( 1-(c_{D}+s_{D})^{1-N} )} > 0\).

Now we consider the case where there exists \(\theta _{0}\in (0,1)\) such that \(c(\theta _{0}) = d_{1,\xi }(\theta _{0})\in (\xi ,\xi +D)\). Then

$$\begin{aligned} h_{\xi }(\theta _{0}) = \varphi (c(\theta _{0}))\bigg ( \frac{1}{\int _{\xi }^{\xi +D}\varphi (s)ds} - \frac{1}{\int _{-\infty }^{\infty }\varphi (s)ds}\bigg ) > 0. \end{aligned}$$

Note that \(\varphi (c(\theta )) \ge \min \{ \varphi (\xi ),\varphi (\xi +D)\}\). By a similar calculation as above, we have

$$\begin{aligned} \lim _{\xi \rightarrow -\infty } \varphi (\xi +D)\bigg ( \frac{1}{\int _{\xi }^{\xi +D}\varphi (s)ds} - \frac{1}{\int _{-\infty }^{\infty }\varphi (s)ds}\bigg )&= \lim _{\xi \rightarrow -\infty } \varphi (\xi )\bigg ( \frac{1}{\int _{\xi }^{\xi +D}\varphi (s)ds} - \frac{1}{\int _{-\infty }^{\infty }\varphi (s)ds}\bigg ) \\ {}&= \frac{(1-N)(\sqrt{\sigma })}{( (c_{D}-s_{D})^{N-1} - 1 )} > 0 \end{aligned}$$

and

$$\begin{aligned} \lim _{\xi \rightarrow \infty } \varphi (\xi )\bigg ( \frac{1}{\int _{\xi }^{\xi +D}\varphi (s)ds} - \frac{1}{\int _{-\infty }^{\infty }\varphi (s)ds}\bigg )&= \lim _{\xi \rightarrow \infty } \varphi (\xi +D)\bigg ( \frac{1}{\int _{\xi }^{\xi +D}\varphi (s)ds} - \frac{1}{\int _{-\infty }^{\infty }\varphi (s)ds}\bigg ) \\ {}&= \frac{(N-1)(\sqrt{\sigma })}{( 1-(c_{D}+s_{D})^{1-N} )} > 0. \end{aligned}$$

Taking the infimum over \(\xi \in (-\infty ,\infty )\) shows

$$\begin{aligned} K_{1,D}(\theta ) - I_{K,N,\infty }(\theta ) \ge \inf _{\xi \in {\mathbb {R}}} \{ g_{\xi }(0), g_{\xi }(1), h_{\xi }(\theta _{0}) \text { with } c(\theta _{0}) = d_{1,\xi }(\theta _{0}) \}> 0. \end{aligned}$$

\(\square \)

Proposition A.4

\(I_{K,N,D}(\theta ) > I_{K,N,\infty }(\theta )\) for all \(\theta \in (0,1)\), \(N < 0\) and \(D < \infty \).

Proof

This is just a corollary of the lemmas above. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, C.H. Rigidity for the isoperimetric inequality of negative effective dimension on weighted Riemannian manifolds. Geom Dedicata 202, 213–232 (2019). https://doi.org/10.1007/s10711-018-0410-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-018-0410-x

Keywords

Mathematics Subject Classification

Navigation