Skip to main content
Log in

On commensurable hyperbolic Coxeter groups

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

For Coxeter groups acting non-cocompactly but with finite covolume on real hyperbolic space \(\mathbb H^n\), new methods are presented to distinguish them up to (wide) commensurability. We exploit these ideas and determine the commensurability classes of all hyperbolic Coxeter groups whose fundamental polyhedra are pyramids over a product of two simplices of positive dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Antolín-Camarena, O., Maloney, G., Roeder, R.: Computing arithmetic invariants for hyperbolic reflection groups. Complex Dynamics. A K Peters, Wellesley (2009)

    MATH  Google Scholar 

  2. Chowla, P., Chowla, S.: On irrational numbers. Nor. Vidensk. Selsk. Skr. (Trondheim) 3, 1–5 (1982)

    MATH  Google Scholar 

  3. Coxeter, H.S.M.: Arrangements of equal spheres in non-Euclidean spaces. Acta Math. Acad. Sci. Hung. 5, 263–274 (1954)

  4. Emery, V.: Even unimodular Lorentzian lattices and hyperbolic volume. J. Reine Angew. Math. 690, 173–177 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Esselmann, F.: The classification of compact hyperbolic Coxeter \(d\)-polytopes with \(d+2\) facets. Comment. Math. Helv. 71, 229–242 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goodman, O., Heard, D., Hodgson, C.: Commensurators of cusped hyperbolic manifolds. Exp. Math. 17, 283–306 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gromov, M., Piatetski-Shapiro, I.: Nonarithmetic groups in Lobachevsky spaces. Inst. Hautes Études Sci. Publ. Math. 66, 93–103 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guglielmetti, R.: CoxIter—computing invariants of hyperbolic Coxeter groups. LMS J. Comput. Math. 18, 754–773 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Heckman, G.: The volume of hyperbolic Coxeter polytopes of even dimension. Indag. Math. 6, 189–196 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Im Hof, H.-C.: Napier cycles and hyperbolic Coxeter groups. Bull. Soc. Math. Belg. Sér. A 42, 523–545 (1990)

  11. Jacquemet, M.: The inradius of a hyperbolic truncated \(n\)-simplex. Discrete Comput. Geom. 51, 997–1016 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jacquemet, M.: New Contributions to Hyperbolic Polyhedra, Reflection Groups, and Their Commensurability, Ph.D. thesis, 2015. https://doc.rero.ch/record/257511

  13. Johnson, N., Kellerhals, R., Ratcliffe, J., Tschantz, S.: The size of a hyperbolic Coxeter simplex. Transform. Groups 4, 329–353 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Johnson, N., Kellerhals, R., Ratcliffe, J., Tschantz, S.: Commensurability classes of hyperbolic Coxeter groups. Linear Algebra Appl. 345, 119–147 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Johnson, N., Weiss, A.: Quaternionic modular groups. Linear Algebra Appl. 295, 159–189 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kaplinskaja, I.: The discrete groups that are generated by reflections in the faces of simplicial prisms in Lobačevskiĭ spaces. Mat. Zametki 15, 159–164 (1974)

    MathSciNet  MATH  Google Scholar 

  17. Karrass, A., Solitar, D.: The subgroups of a free product of two groups with an amalgamated subgroup. Trans. Amer. Math. Soc. 150, 227–255 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kellerhals, R.: On the volume of hyperbolic polyhedra. Math. Ann. 285, 541–569 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kellerhals, R.: Hyperbolic orbifolds of minimal volume. Comput. Methods Funct. Theory 14, 465–481 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lam, T.Y.: Introduction to Quadratic Forms Over Fields, Graduate Studies in Mathematics, vol. 67. American Mathematical Society, Providence (2005)

    Google Scholar 

  21. Maclachlan, C.: Commensurability classes of discrete arithmetic hyperbolic groups. Groups Geom. Dyn. 5, 767–785 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Maclachlan, C., Reid, A.: Invariant trace-fields and quaternion algebras of polyhedral groups. J. Lond. Math. Soc. (2) 58, 709–722 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maclachlan, C., Reid, A.: The Arithmetic of Hyperbolic 3-Manifolds, Graduate Texts in Mathematics, vol. 219. Springer, New York (2003)

    Book  MATH  Google Scholar 

  24. Maxwell, G.: Euler characteristics and imbeddings of hyperbolic Coxeter groups. J. Aust. Math. Soc. Ser. A 64, 149–161 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Meyerhoff, R.: The cusped hyperbolic \(3\)-orbifold of minimum volume. Bull. Am. Math. Soc. (N.S.) 13, 154–156 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Milnor, J.: On polylogarithms, Hurwitz zeta functions, and the Kubert identities. Enseign. Math. (2) 29, 281–322 (1983)

    MathSciNet  MATH  Google Scholar 

  27. Neumann, W., Reid, A.: Arithmetic of hyperbolic manifolds. In: Topology ’90 (Columbus, OH, 1990), Ohio State University Mathematical Research Institute Publications, vol. 1, pp. 273–310. de Gruyter. Berlin (1992)

  28. Takeuchi, K.: Commensurability classes of arithmetic triangle groups. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24, 201–212 (1977)

    MathSciNet  MATH  Google Scholar 

  29. Tumarkin, P.: Hyperbolic Coxeter \(n\)-polytopes with \(n+2\) facets, p. 14. arXiv:math/0301133 (2003)

  30. Tumarkin, P.: Hyperbolic Coxeter polytopes in \(\mathbb{H}^m\) with \(n+2\) hyperfacets. Mat. Zametki 75(6), 909–916 (2004)

    Article  MathSciNet  Google Scholar 

  31. Vignéras, M.-F.: Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800. Springer, Berlin (1980)

  32. Vinberg, È.: Hyperbolic reflection groups. Russian Math. Surveys 40(1), 31–75

  33. Vinberg, È: Non-arithmetic hyperbolic reflection groups in higher dimensions. In: University Bielefeld Preprint 14047, p. 10 (2014)

  34. Vinberg , E., Shvartsman, O.: Discrete groups of motions of spaces of constant curvature. In: Geometry, II, Encyclopaedia Mathematical Sciences, vol. 29, pp. 139–248. Springer, Berlin (1993)

Download references

Acknowledgments

The authors would like to thank Vincent Emery and John Ratcliffe for helpful discussions. The first author was fully and the second and third authors were partially supported by Schweizerischer Nationalfonds 200020-144438 and 200020-156104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Kellerhals.

Additional information

In memoriam Colin Maclachlan.

Appendix: Tumarkin’s Coxeter pyramid groups

Appendix: Tumarkin’s Coxeter pyramid groups

The classification of the cofinite Coxeter groups in \(\text {Isom}(\mathbb H^n)\) of rank \(n+2\) whose fundamental polyhedra are pyramids over a product of two simplices of positive dimensions is due to Tumarkin [29, 30]. The results are summarised in the Figs. 1921 (see [30, Section 4]).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guglielmetti, R., Jacquemet, M. & Kellerhals, R. On commensurable hyperbolic Coxeter groups. Geom Dedicata 183, 143–167 (2016). https://doi.org/10.1007/s10711-016-0151-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-016-0151-7

Keywords

Mathematics Subject Classification

Navigation