Skip to main content
Log in

Hyperbolic Orbifolds of Minimal Volume

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

We provide a survey of hyperbolic orbifolds of minimal volume, starting with the results of Siegel in two dimensions and with the contributions of Gehring, Martin and others in three dimensions. For higher dimensions, we summarise some of the most important results, due to Belolipetsky, Emery and Hild, by discussing related features such as hyperbolic Coxeter groups, arithmeticity and consequences of Prasad’s volume, as well as canonical cusps, crystallography and packing densities. We also present some new results about volume minimisers in dimensions six and eight related to Bugaenko’s cocompact arithmetic Coxeter groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Belolipetsky, M.: On volumes of arithmetic quotients of SO(1, n). Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3(4), 749–770 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Belolipetsky, M.: Addendum to: “On volumes of arithmetic quotients of SO\((1, n)\)”. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6(2), 263–268 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Belolipetsky, M., Emery, V.: On volumes of arithmetic quotients of PO\((n,1)^{\circ }, \,n\) odd. Proc. Lond. Math. Soc. 105(3), 541–570 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bugaenko, V.O.: Groups of automorphisms of unimodular hyperbolic quadratic forms over the ring Z\([(\sqrt{5}+1)/2]\). Mosc. Univ. Math. Bull. 5, 6–14 (1984)

    MathSciNet  Google Scholar 

  5. Bugaenko, V. O.: Arithmetic crystallographic groups generated by reflections, and reflective hyperbolic lattices. In: Lie groups, their discrete subgroups, and invariant theory, Adv. Soviet Math., vol. 8, Amer. Math. Soc., Providence, RI, 1992, pp. 33–55.

  6. Chinburg, T., Friedman, E.: The smallest arithmetic hyperbolic three-orbifold. Invent. Math. 86(3), 507–527 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Emery, V.: Du volume des quotients arithmétiques de l’espace hyperbolique. PhD thesis, University of Fribourg (2009)

  8. Emery, V.: Even unimodular lorentzian lattices and hyperbolic volume. J. Reine Angew. Math. 2014(690), 173–177 (2012)

  9. Emery, V.: Private communication (2013)

  10. Emery, V., Kellerhals, R.: The three smallest compact arithmetic hyperbolic 5-orbifolds. Algebr. Geom. Topol. 13, 817–829 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Felikson, A., Tumarkin, P., Zehrt, T.: On hyperbolic Coxeter \(n\)-polytopes with \(n+2\) facets. Adv. Geom. 7(2), 177–189 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gehring, F.W., Maclachlan, C., Martin, G.J., Reid, A.W.: Arithmeticity, discreteness and volume. Trans. Am. Math. Soc. 349(9), 3611–3643 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gehring, F.W., Martin, G.J.: Precisely invariant collars and the volume of hyperbolic 3-folds. J. Differ. Geom. 49(3), 411–435 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Gehring, F.W., Martin, G.J.: Minimal co-volume hyperbolic lattices, I: the spherical points of a Kleinian group. Ann. Math. 170(1), 123–161 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grunewald, F., Kühnlein, S.: On the proof of Humbert’s volume formula. Manuscr. Math. 95(4), 431–436 (1998)

    Article  MATH  Google Scholar 

  16. Hild, T.: The cusped hyperbolic orbifolds of minimal volume in dimensions less than ten. J. Algebra 313(1), 208–222 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hild, T., Kellerhals, R.: The fcc lattice and the cusped hyperbolic 4-orbifold of minimal volume. J. Lond. Math. Soc. 75, 677–689 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Johnson, N.W., Ratcliffe, J.G., Kellerhals, R., Tschantz, S.T.: The size of a hyperbolic Coxeter simplex. Transform. Groups 4(4), 329–353 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kellerhals, R.: On the volume of hyperbolic polyhedra. Math. Ann. 285(4), 541–569 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kellerhals, R.: On Schläfli’s reduction formula. Math. Z. 206(2), 193–210 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kellerhals, R.: Volumes of cusped hyperbolic manifolds. Topology 37(4), 719–734 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kellerhals, R.: Scissors congruence, the golden ratio and volumes in hyperbolic 5-space. Discret. Comput. Geom. 47(3), 629–658 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kellerhals, R., Perren, G.: On the growth of cocompact hyperbolic Coxeter groups. Eur. J. Combin. 32(8), 1299–1316 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Marshall, T.H., Martin, G.J.: Minimal co-volume hyperbolic lattices, II: simple torsion in a Kleinian group. Ann. Math. (2) 176(1), 261–301 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Meyerhoff, R.: The cusped hyperbolic 3-orbifold of minimum volume. Bull. Am. Math. Soc. (N.S.) 13(2), 154–156 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Milnor, J.: Hyperbolic geometry: the first 150 years. Bull. Am. Math. Soc. (N.S.) 6(1), 9–24 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Siegel, C.L.: Some remarks on discontinuous groups. Ann. Math. 46(4), 708–718 (1945)

    Article  MATH  Google Scholar 

  28. Tumarkin, P.: Hyperbolic Coxeter polytopes in \({\mathbb{H}}^m\) with \(n+2\) hyperfacets. Mat. Zametki 75(6), 909–916 (2004)

    Article  MathSciNet  Google Scholar 

  29. Tumarkin, P.: Compact hyperbolic Coxeter n-polytopes with \(n+3\) facets. Electron. J. Combin. 14(1) (2007). Research Paper 69 (electronic)

  30. Tumarkin, P., Felikson, A.: On bounded hyperbolic d-dimensional Coxeter polytopes with \(d+4\) hyperfaces. Tr. Mosc. Mat. Obs. 69, 126–181 (2008)

    MathSciNet  Google Scholar 

  31. Vinberg, È.B.: Hyperbolic groups of reflections. Uspekhi Mat. Nauk. 40, 241(1), 29–66, 255 (1985)

  32. Vinberg, È.B., Shvartsman, O.V.: Discrete groups of motions of spaces of constant curvature. In: Geometry, II, Encyclopedia Math. Sci., vol. 29, pp. 139–248. Springer, Berlin (1993)

  33. Zehrt, T.: The covolume of discrete subgroups of Iso \(({\mathbb{H}}^{2m})\). Discret. Math. 309(8), 2284–2291 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank Vincent Emery for helpful discussions concerning Sec. 4.2.2. and Matthieu Jacquemet for his technical support. She was partially supported by Schweizerischer Nationalfonds 200020-144438.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Kellerhals.

Additional information

Communicated by Matti Vuorinen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kellerhals, R. Hyperbolic Orbifolds of Minimal Volume. Comput. Methods Funct. Theory 14, 465–481 (2014). https://doi.org/10.1007/s40315-014-0074-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-014-0074-y

Keywords

Mathematics Subject Classification (2000)

Navigation