Skip to main content
Log in

Extrinsic diameter of immersed flat tori in S 3

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2013

Abstract

Enomoto, Weiner and the first author showed the rigidity of the Clifford torus amongst the class of embedded flat tori in S 3. In the proof of that result, an estimate of extrinsic diameter of flat tori plays a crucial role. It is reasonable to expect that the same rigidity holds in the class of immersed flat tori in S 3. In this paper, we give a new method for characterizing immersed flat tori in S 3 with extrinsic diameter π, which is a somewhat similar technique to the proof of the 6-vertex theorem for certain closed plane curves given by the second author. As an application, we show that the Clifford torus is rigid in the class of immersed flat tori whose mean curvature functions do not change sign. Recently, the global behaviour of flat surfaces in H 3 and R 3 regarded as wave fronts has been studied. We also give here a formulation of flat tori in S 3 as wave fronts. As an application, we shall exhibit a flat torus as a wave front whose extrinsic diameter is less than π.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Topological Invariants of Plane Curves and Caustics. University Lecture Series 5, American Mathmatical Society, Providence, R.I. (1994)

  2. Bianchi L.: Sulle superficie a curvatura nulla in geometria ellittica. Ann. Mat. Pura Appl. 24, 93–129 (1896)

    Article  MATH  Google Scholar 

  3. Enomoto K., Kitagawa Y., Weiner J.L.: A rigidity theorem for the Clifford tori in S 3. Proc. Am. Math. Soc. 124, 265–268 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gálvez J.A., Mira P.: Isometric immersions of R 2 into R 4 and perturbation of Hopf tori. Math. Z. 266, 207–227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jackson S.B.: Vertices of plane curves. Bull. Am. Math. Soc. 50, 564–578 (1944)

    Article  MATH  Google Scholar 

  6. Kitagawa Y.: Periodicity of the asymptotic curves on flat tori in S 3. J. Math. Soc. Jpn. 40, 457–476 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kitagawa Y.: Embedded flat tori in the unit 3-sphere. J. Math. Soc. Jpn. 47(2), 275–296 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kitagawa Y.: Flat tori in the 3-dimensional sphere. Sugaku Expos. 21, 133–145 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Kneser, H.: Neuer Beweis des Vierscheitelsatzes. Christiaan Huygens 2, 315–318 (1922/1923)

  10. Kobayashi O., Umehara M.: Geometry of scrolls. Osaka J. Math. 33, 441–473 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Kurono, Y., Umehara, M.: Flat Möbius strips of given isotopy type in R 3 whose centerline are geodesic or lines of curvature. Geom. Dedicata 109–130 (2008)

  12. Kokubu M., Rossman W., Saji K., Umehara M., Yamada K.: Singularities of flat fronts in hyperbolic 3-space. Pac. J. Math. 221, 303–351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kokubu M., Rossman W., Umehara M., Yamada K.: Flat fronts in hyperbolic 3-space and their caustics. J. Math. Soc. Jpn. 59, 265–299 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Leon-Guzman, M.A., Mira, P., Pastor, J.A.: The space of Lorentzian flat tori in anti-de Sitter 3-space (to appear in Trans. Am. Math. Soc. arXiv:0905.3991)

  15. Murata S., Umehara M.: Flat surfaces with singularities in Euclidean 3-space. J. Diff. Geom. 82, 279–316 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Okada, T.: Flat fronts in S 3 (in Japanese). Master’s Thesis, Osaka University (2005)

  17. Pikall U.: Hopf tori in S 3. Invent Math. 81, 21–37 (1985)

    Google Scholar 

  18. Roitman P.: Flat surfaces in hyperbolic 3-space as normal surfaces to a congruence of geodesics. Tohoku Math. J. 59, 21–37 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Saji K., Umehara M., Yamada K.: Geometry of fronts. Ann. Math. 169, 491–529 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Saji K., Umehara M., Yamada K.: Coherent tangent bundles and Gauss-Bonnet formulas for wave fronts. J. Geom. Anal. 12, 1–27 (2010)

    Google Scholar 

  21. Saji, K., Umehara, M., Yamada, K.: A 2-singularities of hypersurfaces with non-negative sectional curvature in Euclidean space, preprint, arXiv:1011.1544

  22. Thorbergsson G., Umehara M.: Inflection points and double tangents on anti-convex curves in the real projective plane. Tohoku Math. J. 60, 149–181 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Umehara M.: 6-vertex theorem for closed planar curve which bounds an immersed surface with non-zero genus. Nagoya Math. J. 134, 75–89 (1994)

    MathSciNet  MATH  Google Scholar 

  24. Umehara, M.: A Unified Approach to the Four Vertex Theorems I. Differential and Symplectic Topology of Knots and Curves, pp. 185–228. American Mathematical Society Translation Series 2 No. 190, American Mathematical Society, Providence, R.I (1999)

  25. Umehara, M., Yamada, K.: Applications of a completeness lemma in minimal surface theory to various classes of surfaces. (to appear in Bull. Lond. Math. Soc.) arXiv:0909.1128

  26. Weiner J.L.: Flat tori in S 3 and their Gauss maps. Proc. Lond. Math. Soc. 62(3), 54–76 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wunderlich W.: Über ein abwickelbares Möbiusband. Monatsh. Math. 66, 276–289 (1962)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Umehara.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s10711-013-9900-z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitagawa, Y., Umehara, M. Extrinsic diameter of immersed flat tori in S 3 . Geom Dedicata 155, 105–140 (2011). https://doi.org/10.1007/s10711-011-9580-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-011-9580-5

Keywords

Mathematics Subject Classification (2000)

Navigation