Skip to main content
Log in

Moduli Spaces of Flat Tori with Prescribed Holonomy

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We generalise to the genus one case several results of Thurston concerning moduli spaces of flat Euclidean structures with conical singularities on the two dimensional sphere. More precisely, we study moduli spaces of flat tori with n cone points and a prescribed holonomy \({\rho}\). In his paper `Flat Surfaces’   Veech has established that under some assumptions on the cone angles, such a moduli space \({\mathcal{F}_{[\rho]} \subset \mathcal{M}_{1,n}}\) carries a natural geometric structure modeled on the complex hyperbolic space \({{\mathbb C}{\mathbb{H}}^{n-1}}\) which is not metrically complete. Using surgeries for flat surfaces, we prove that the metric completion \({\overline{\mathcal{F}_{[\rho]}}}\) is obtained by adjoining to \({ \mathcal{F}_{[\rho]}}\) certain strata that are themselves moduli spaces of flat surfaces of genus 0 or 1, obtained as degenerations of the flat tori whose moduli space is \({ \mathcal{F}_{[\rho]}}\). We show that the \({{\mathbb C}{\mathbb{H}}^{n-1}}\)-structure of \({ \mathcal{F}_{[\rho]}}\) extends to a complex hyperbolic cone-manifold structure of finite volume on \({ \overline{\mathcal{F}_{[\rho]}}}\) and we compute the cone angles associated to the different strata of codimension 1. Finally, we address the question of whether or not the holonomy of Veech’s \({{\mathbb C}{\mathbb{H}}^{n-1}}\)-structure on \({\mathcal{F}_{[\rho]}}\) has a discrete image in \({ {\rm Aut}({\mathbb C}{\mathbb{H}}^{n-1})={\rm PU}(1,n-1)}\). We outline a general strategy to find moduli spaces \({\mathcal{F}_{[\rho]}}\) whose \({{\mathbb C}{\mathbb{H}}^{n-1}}\)-holonomy gives rise to lattices in \({{\rm PU}(1,n-1)}\) and eventually we give a finite list of \({\mathcal{F}_{[\rho]}}\) ’s whose holonomy is a complex hyperbolic arithmetic lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Arbarello, M. Cornalba, and P.A. Griffiths. Geometry of algebraic curves. Volume II,volume 268 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, (2011). With a contribution by Joseph Daniel Harris.

  2. M. R. Bridson and A. Haefliger. Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, (1999).

  3. Boadi R., Parker J.: Mostow’s lattices and cone metrics on the sphere. Adv. Geom., 15(1), 27–53 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Deligne and G. D. Mostow. Monodromy of hypergeometric functions and nonlattice integral monodromy. Inst. Hautes Études Sci. Publ. Math., (63) (1986), 5–89

  5. P. Deligne and G. D. Mostow. Commensurabilities among lattices in \({{\rm PU}(1,n)}\), volume 132 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, (1993).

  6. M. Deraux, J. Parker, and J. Paupert.s New non-arithmetic complex hyperbolic lattices. Invent. Math., 203(3) (2016), 681–771

  7. F. Diamond and J. Shurman. A first course in modular forms, volume 228 of Graduate Texts in Mathematics. Springer-Verlag, New York, (2005).

  8. A. Eskin, H. Masur, and A. Zorich. Moduli spaces of abelian differentials: the principal boundary, counting problems, and the Siegel-Veech constants. Publ. Math. Inst. Hautes Études Sci., (97) (2003), 61–179

  9. González A., López-López J.: Shapes of tetrahedra with prescribed cone angles. Conform. Geom. Dyn., 15, 50–63 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. W. M. Goldman. Complex hyperbolic geometry. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, (1999). Oxford Science Publications.

  11. S. Ghazouani and L. Pirio. Moduli spaces of flat tori and elliptic hypergeometric functions. Preprint arXiv:1605.02356.

  12. Goldman W. M., Parker J. R.: Dirichlet polyhedra for dihedral groups acting on complex hyperbolic space. J. Geom. Anal., 2(6), 517–554 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Gromov. Metric structures for Riemannian and non-Riemannian spaces, volume 152 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [ MR0682063 (85e:53051)], With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates.

  14. D. Jackson and T. Visentin. An atlas of the smaller maps in orientable and nonorientable surfaces. CRC Press Series on Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton, FL, (2001).

  15. Kontsevich M., Zorich A.: Connected components of the moduli spaces of Abelian differentials with prescribed singularities. Invent. Math., 153(3), 631–678 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Le Vavasseur. Sur le système d’équations aux dérivées partielles simultanées auxquelles satisfait la série hypergéométrique à deux variables \({{\rm F}_1\left(\alpha, \beta, \beta',\gamma; x, y\right)}\). Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 7(3) (1893), 1–120

  17. Toshiyuki Mano. The Riemann-Wirtinger integral and monodromy-preserving deformation on elliptic curves. Int. Math. Res. Not. IMRN, pages Art. ID rnn110, 19, 2008.

  18. McMullen C. T.: The gauss-bonnet theorem for cone manifolds and volumes of moduli spaces. Amer. J. Math., 139(1), 261–291 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. G. D. Mostow. Generalized Picard lattices arising from half-integral conditions. Inst. Hautes Études Sci. Publ. Math., (63) (1986), 91–106

  20. Mostow G. D.: On discontinuous action of monodromy groups on the complex n-ball. J. Amer. Math. Soc., 1(3), 555–586 (1988)

    MathSciNet  MATH  Google Scholar 

  21. H. Masur and J. Smillie. Hausdorff dimension of sets of nonergodic measured foliations. Ann. of Math. (2), 134(3) (1991), 455–543

  22. Masur H., Zorich A.: Multiple saddle connections on flat surfaces and the principal boundary of the moduli spaces of quadratic differentials. Geom. Funct. Anal., 18(3), 919–987 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Parker J. R.: Cone metrics on the sphere and Livné’s lattices. Acta Math., 196(1), 1–64 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pasquinelli. I.: Deligne-Mostow lattices with three fold symmetry and cone metrics on the sphere. Conform. Geom. Dyn., 20, 235–281 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sauter. J.: Isomorphisms among monodromy groups and applications to lattices in \({{\rm PU}(1,2)}\). Pacific J. Math., 146(2), 331–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. R. E. Schwartz. Notes on shape of polyhedra. Preprint arXiv:1506.07252

  27. Terada. T.: Problème de Riemann et fonctions automorphes provenant des fonctions hypergéométriques de plusieurs variables. J. Math. Kyoto Univ., 13, 557–578 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tholozan. N.: Sur la complétude de certaines variétés pseudo-riemanniennes localement homogènes. Ann. Inst. Fourier., 65(5), 1921–1952 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. W. P. Thurston. Three-dimensional geometry and topology. Vol. 1, volume 35 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, (1997). Edited by Silvio Levy.

  30. W. P. Thurston. Shapes of polyhedra and triangulations of the sphere. In: The Epstein birthday schrift, volume 1 of Geom. Topol. Monogr., pages 511–549. Geom. Topol. Publ., Coventry, (1998).

  31. M. Troyanov. Les surfaces euclidiennes à singularités coniques. Enseign. Math. (2), 32(1-2) (1986), 79–94

  32. M. Troyanov. On the moduli space of singular Euclidean surfaces. In: Handbook of Teichmüller theory. Vol. I, volume 11 of IRMA Lect. Math. Theor. Phys., pages 507–540. Eur. Math. Soc., Zürich, (2007).

  33. Veech. W.: Flat surfaces. Amer. J. Math., 115(3), 589–689 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Weber. Fundamentalbereiche komplex hyperbolischer Flächen. Bonner Mathematische Schriften [Bonn Mathematical Publications], 254. Universität Bonn, Mathematisches Institut, Bonn, (1993).

  35. J. Wolf. Spaces of constant curvature. AMS Chelsea Publishing, Providence, RI, sixth edition, (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Pirio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazouani, S., Pirio, L. Moduli Spaces of Flat Tori with Prescribed Holonomy. Geom. Funct. Anal. 27, 1289–1366 (2017). https://doi.org/10.1007/s00039-017-0426-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-017-0426-7

Navigation