Skip to main content
Log in

Nucleotide diversity of a ND5 fragment confirms that population expansion is the most suitable explanation for the mtDNA haplotype polymorphism of Drosophila subobscura

  • Original Research
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Results from mitochondria (mt) DNA restriction site analyses (RSAs) have revealed that wild populations of Drosophila subobscura are formed by two common (I and II) and some rare, often endemic, low-frequency haplotypes. In the study reported here, we analysed nucleotide diversity in a 942-bp fragment of the mtDNA ND5 gene in 48 D. subobscura individuals captured from three populations that showed haplotypes I, II or the less common ones, as well as in one additional individual belonging to D. guanche that was taken as an outgroup. RSAs and sequencing results were compared. The two approaches yielded similar nucleotide variability parameters, suggesting a consistency in the results obtained from mtDNA dynamics in natural populations of D. subobscura. Patterns of polymorphism at ND5 are most consistent with the hypothesis of population expansion after a bottleneck that may have occurred since the last glaciation or which may occur seasonally after the summer and winter. However, we cannot rule out that selection has a role in maintaining the two major haplotypes at intermediate frequencies in worldwide populations of D. subobscura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afonso JM, Volz A, Hernández M, Ruttkay H, González AM, Larruga JM, Cabrera VM (1990) Mitochondrial DNA variation and genetic structure in Old-World populations of Drosophila subobscura. Mol Biol Evol 7:123–142

    CAS  PubMed  Google Scholar 

  • Ayala FJ, Serra LL, Prevosti A (1989) A grand experiment in evolution: the Drosophila subobscura colonization of the Americas. Genome 31:246–255

    Google Scholar 

  • Ballard JWO, Melvin RG, Katewa SD, Maas K (2007) Mitochondrial DNA variation is associated with measurable differences in life-history traits and mitochondrial metabolism in Drosophila simulans. Evolution 61:1735–1747

    Article  CAS  PubMed  Google Scholar 

  • Barrio E, Latorre A, Moya A, Ayala FJ (1992) Phylogenetic reconstruction of the Drosophila obscura group, on the basis of mitochondrial DNA. Mol Biol Evol 9:621–635

    CAS  PubMed  Google Scholar 

  • Bazin E, Glémin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572

    Article  CAS  PubMed  Google Scholar 

  • Castro JA, Ramon M, Picornell A, Moya A (1999) The genetic structure of Drosophila suboscura populations from the islands of Majorca and Minorca (Balearic Islands, Spain) based on allozymes and mitochondrial DNA. Heredity 83:271–279

    Article  CAS  PubMed  Google Scholar 

  • Castro JA, Oliver P, Christie JS, Picornell A, Ramon M, Moya A (2003) Assortative mating and fertility in two Drosophila subobscura strains with different mitochondrial DNA haplotypes. Genetica 119:295–301

    Article  CAS  PubMed  Google Scholar 

  • Christie JS, Castro JA, Oliver P, Picornell A, Ramon MM, Moya A (2004) Fitness and life-history traits of the two major mitochondrial DNA haplotypes of Drosophila subobscura. Heredity 93:371–378

    Article  CAS  PubMed  Google Scholar 

  • Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271

    Article  CAS  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  CAS  PubMed  Google Scholar 

  • Fay JC, Wu CI (2000) Hitchhiking under positive darwinian selection. Genetics 155:1405–1413

    CAS  PubMed  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    CAS  PubMed  Google Scholar 

  • García-Martínez J, Castro JA, Ramón M, Latorre A, Moya A (1998) Mitochondrial DNA haplotype frequencies in natural and experimental populations of Drosophila subobscura. Genetics 149:1377–1382

    PubMed  Google Scholar 

  • Gerber AS, Loggins R, Kumar S, Dowling TE (2001) Does non-neutral evolution shape observed patterns of DNA variation in animal mitochondrial genomes? Annu Rev Genet 35:539–566

    Article  CAS  PubMed  Google Scholar 

  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Sym Ser 41:95–98

    CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Google Scholar 

  • Latorre A, Moya A, Ayala FJ (1986) Evolution of mitochondrial DNA in Drosophila subobscura. Proc Natl Acad Sci USA 83:8649–8653

    Article  CAS  PubMed  Google Scholar 

  • Latorre A, Barrio E, Moya A, Ayala FJ (1988) Mitochondrial DNA evolution in the Drosophila obscura group. Mol Biol Evol 5:717–728

    CAS  PubMed  Google Scholar 

  • Latorre A, Hernández C, Martínez D, Castro JA, Ramón M, Moya A (1992) Population structure and mitochondrial DNA gene flow in Old World populations of Drosophila suboscura. Heredity 68:15–24

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lynch M (2006) Streamlining and simplification of microbial genome architecture. Annu Rev Microbiol 60:327–349

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Crease TJ (1990) The analysis of population survey data on DNA sequence variation. Mol Biol Evol 7:377–394

    CAS  PubMed  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  CAS  PubMed  Google Scholar 

  • Meiklejohn C, Montooth KKL, Rand DM (2007) Positive and negative selection on the mitochondrial genome. Trends Genet 23:259–263

    Article  CAS  PubMed  Google Scholar 

  • Menozzi P, Krimbas CB (1992) The inversion polymorphism of D. subobscura revisited. Synthetic maps of gene arrangement frequencies and their interpretation. J Evol Biol 5:625–641

    Article  Google Scholar 

  • Moya A, Barrio E, Martínez D, Latorre A, González-Candelas F, Ramón M, Castro JA (1993) Molecular characterization and cytonuclear disequilibria of two Drosophila subobscura mitochondrial haplotypes. Genome 36:890–898

    Article  CAS  PubMed  Google Scholar 

  • Nachman MW (1998) Deleterious mutations in animal mitochondrial DNA. Genetica 102(103):61–69

    Article  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Oliver P, Castro JA, Picornell A, Ramon MM, Solé E, Balanyà J, Serra L, Latorre A, Moya A (2002) Linkage disequilibria between mtDNA haplotypes and chromosomal arrangements in a natural population of Drosophila subobscura. Heredity 89:133–138

    Article  CAS  PubMed  Google Scholar 

  • Oliver P, Balanyà J, Ramon MM, Picornell A, Ll Serra, Moya A, Castro JA (2005) Population dynamics of the two majority mitochondrial DNA haplotypes in experimental populations of Drosophila subobscura. Genome 48:1010–1018

    Article  CAS  PubMed  Google Scholar 

  • Pinto FM, Brehm A, Hernandez M, Larruga JM, González AM, Cabrera VM (1997) Population genetic structure and colonization sequence of Drosophila subobscura in the Canaries and Madeira Atlantic islands as inferred by autosomal, sex-linked and mtDNA traits. J Hered 88:108–114

    CAS  PubMed  Google Scholar 

  • Rand DM, Kann LM (1996) Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol Biol Evol 13:735–748

    CAS  PubMed  Google Scholar 

  • Rogers A, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Rozas JM, Hernandez M, Cabrera VM, Prevosti A (1990) Colonization of America by Drosophila subobscura: effect of the founder event on the mitochondrial DNA polymorphism. Mol Biol Evol 7:103–109

    CAS  PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants PB96-0793 and BOS2000-1000 from the Dirección General de Enseñanza Superior (Ministerio de Educación y Cultura, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Castro.

Appendix I

Appendix I

See Table 8.

Table 8 Polymorphic nucleotide sites in Drosophila subobscura and D. guanche in the analysed region of the ND5 gene

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, J.A., Barrio, E., González, A. et al. Nucleotide diversity of a ND5 fragment confirms that population expansion is the most suitable explanation for the mtDNA haplotype polymorphism of Drosophila subobscura . Genetica 138, 819–829 (2010). https://doi.org/10.1007/s10709-010-9464-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-010-9464-x

Keywords

Navigation