Skip to main content
Log in

Overview of QTL detection in plants and tests for synergistic epistatic interactions

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Improvements in the usefulness of QTL analysis arise from better statistical methods applied to the problem, ability to analyze more complex mating designs, and the fitting of less simplified genetic models. Here we review the advantages of different plant mating designs in QTL analysis and conclude that diallel designs have several favorable properties. We then turn to the detection of systematic genome-wide synergistic epistasis. This form of epistasis has important implications from evolutionary (maintenance of sexual reproduction and concealment of cryptic genetic variation) and practical perspectives (response to pyramided favorable alleles). We develop two methods for detecting systematic synergistic epistasis, one based on analyzing interactions between locus effects and predicted individual genotypic values and one based on analyzing pairwise locus interactions. Using the first method we detect synergistic epistasis in a barley and a wheat dataset but not in a maize dataset. We fail to detect synergistic epistasis with the second method. We discuss our results in the light of theoretical questions concerning the mechanisms of synergistic epistasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Azevedo RBR, Lohaus R, Srinivasan S, Dang KK, Burch CL (2006) Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 440:87–90. doi:10.1038/nature04488

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113:206–224. doi:10.1007/s00122-006-0287-1

    Article  PubMed  CAS  Google Scholar 

  • Carlborg O, Andersson L, Kinghorn B (2000) The use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait loci. Genetics 155:2003–2010

    PubMed  CAS  Google Scholar 

  • Causse M, Chaïb J, Lecomte L, Buret M, Hospital F (2007) Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. TAG Theor Appl Genet 115:429–442. doi:10.1007/s00122-007-0578-1

    Article  CAS  Google Scholar 

  • Charcosset A, Causse M, Moreau L, Gallais A (1994) Investigation into the effect of genetic background on QTL expression using three connected maize recombinant inbred lines (RIL) populations. In: van Ooijen JW, Jansen J (eds) Biometrics in plant breeding: applications of molecular markers. CPRO-DLO, Wageningen, The Netherlands, pp 75–84

    Google Scholar 

  • Cheverud JM, Routman EJ (1995) Epistasis and its contribution to genetic variance components. Genetics 139:1455–1461

    PubMed  CAS  Google Scholar 

  • Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143:1807–1817

    PubMed  CAS  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, 2nd edn. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Gibson G, Dworkin I (2004) Uncovering cryptic genetic variation. Nat Rev Genet 5:681–690. doi:10.1038/nrg1426

    Article  PubMed  CAS  Google Scholar 

  • Groos C, Gay G, Perretant MR, Gervais L, Bernard M, Dedryver F, Charmet G (2002) Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white × red grain bread-wheat cross. TAG Theor Appl Genet 104:39–47. doi:10.1007/s001220200004

    Article  CAS  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. TAG Theor Appl Genet 106:1032–1040

    Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    PubMed  CAS  Google Scholar 

  • Hwang JTG, Nettleton D (2002) Investigating the probability of sign inconsistency in the regression coefficients of markers flanking quantitative trait loci. Genetics 160:1697–1705

    PubMed  CAS  Google Scholar 

  • Jannink JL (2007) Identifying quantitative trait locus by genetic background interactions in association studies. Genetics 176:553–561. doi:10.1534/genetics.106.062992

    Article  PubMed  CAS  Google Scholar 

  • Jannink J-L, Wu X-L (2003) Estimating allelic number and identity in state of QTL in interconnected families. Genet Res 81:133–144. doi:10.1017/S0016672303006153

    Article  PubMed  CAS  Google Scholar 

  • Jansen RC, Jannink J-L, Beavis WD (2003) Mapping quantitative trait loci in plant breeding populations: use of parental haplotype sharing. Crop Sci 43:829–834

    CAS  Google Scholar 

  • Keightley PD (1996) Metabolic models of selection response. J Theor Biol 182:311–316. doi:10.1006/jtbi.1996.0169

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336:435–440. doi:10.1038/336435a0

    Article  PubMed  CAS  Google Scholar 

  • Lenski RE, Ofria C, Collier TC, Adami C (1999) Genome complexity, robustness and genetic interactions in digital organisms. Nature 400:661–664. doi:10.1038/23245

    Article  PubMed  CAS  Google Scholar 

  • Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS–a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337. doi:10.1023/A:1008929526011

    Article  Google Scholar 

  • Meuwissen THE, Karlsen A, Lien S, Olsaker I, Goddard ME (2002) Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics 161:373–379

    PubMed  CAS  Google Scholar 

  • Moreau L, Monod H, Charcosset A, Gallais A (1999) Marker-assisted selection with spatial analysis of unreplicated field trials. Theor Appl Genet 98:234–242. doi:10.1007/s001220051063

    Article  Google Scholar 

  • Moreau L, Charcosset A, Gallais A (2004) Experimental evaluation of several cycles of marker-assisted selection in maize. Euphytica 137:111–118. doi:10.1023/B:EUPH.0000040508.01402.21

    Article  CAS  Google Scholar 

  • Muranty H (1996) Power of tests for quantitative trait loci detection using full-sib families in different schemes. Heredity 76:156–165. doi:10.1038/hdy.1996.23

    Article  Google Scholar 

  • O’Donoughue LS, Kianian SF, Rayapati PJ, Penner GA, Sorrells ME, Tanksley SD, Phillips RL, Rines HW, Lee M, Fedak G, Molnar SJ, Hoffman D, Salas CA, Wu B, Autrique E, Van Deynze A (1995) A molecular linkage map of cultivated oat. Genome 38:368–380. doi:10.1139/g95-048

    Article  PubMed  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726. doi:10.1038/335721a0

    Article  PubMed  CAS  Google Scholar 

  • Piepho HP (2000) A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data. Genetics 156:2043–2050

    PubMed  CAS  Google Scholar 

  • Rebaï A, Goffinet B (1993) Power of tests for QTL detection using replicated progenies derived from a diallel cross. Theor Appl Genet 86:1014–1022. doi:10.1007/BF00211055

    Article  Google Scholar 

  • Sanjuán R, Elena SF (2006) Epistasis correlates to genomic complexity. PNAS 103:14402–14405. doi:10.1073/pnas.0604543103

    Article  PubMed  CAS  Google Scholar 

  • Satagopan JM, Yandell BS, Newton MA, Osborn TC (1996) A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics 144:805–816

    PubMed  CAS  Google Scholar 

  • Segrè D, DeLuna A, Church GM, Kishony R (2005) Modular epistasis in yeast metabolism. Nat Genet 37:77–83

    PubMed  Google Scholar 

  • Sillanpää MJ, Arjas E (1998) Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics 148:1373–1388

    PubMed  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B Stat Methodol 64:583–639. doi:10.1111/1467-9868.00353

    Article  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7:257–264. doi:10.1038/nbt0389-257

    Article  CAS  Google Scholar 

  • Tinker NA, Mather DE, Rossnagel BG, Kasha KJ, Kleinhofs A, Hayes PM et al (1996) Regions of the genome that affect agronomic performance in two-row barley. Crop Sci 36:1053–1062

    Google Scholar 

  • Wagner A (2005) Distributed robustness versus redundancy as causes of mutational robustness. BioEssays 27:176–188. doi:10.1002/bies.20170

    Article  PubMed  CAS  Google Scholar 

  • Wagner G, Booth G, Bagheri-Chaichian H (1997) A population genetic theory of canalization. Evolution 51:329–347. doi:10.2307/2411105

    Article  Google Scholar 

  • Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264. doi:10.1007/s001220051331

    Article  Google Scholar 

  • Wu X-L, Jannink J-L (2004) Optimal sampling of a population to determine QTL location, variance, and allelic number. Theor Appl Genet 108:1434–1442. doi:10.1007/s00122-003-1569-5

    Article  PubMed  Google Scholar 

  • Xu S (1996) Mapping quantitative trait loci using four-way crosses. Genet Res 68:175–181

    Article  Google Scholar 

  • Xu SZ (1998) Mapping quantitative trait loci using multiple families of line crosses. Genetics 148:517–524

    PubMed  CAS  Google Scholar 

  • Xu S (2007) An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biometrics 63:513–521. doi:10.1111/j.1541-0420.2006.00711.x

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Jia Z (2007) Genomewide analysis of epistatic effects for quantitative traits in barley. Genetics 175:1955–1963. doi:10.1534/genetics.106.066571

    Article  PubMed  CAS  Google Scholar 

  • Xu SZ, Yi NJ (2000) Mixed model analysis of quantitative trait loci. Proc Natl Acad Sci USA 97:14542–14547. doi:10.1073/pnas.250235197

    Article  PubMed  CAS  Google Scholar 

  • Yi N, Shriner D, Banerjee S, Mehta T, Pomp D, Yandell BS (2007) An efficient Bayesian model selection approach for interacting quantitative trait loci models with many effects. Genetics 176:1865–1877. doi:10.1534/genetics.107.071365

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Academic and Organizing Committees of the Third International Conference on Quantitative Genetics for inviting this presentation and for the excellent organization of the conference. We thank Dr. W. G. Hill and two anonymous reviewers for their work on this manuscript. This research was funded in part by a sabbatical fellowship from the Organization for Economic Cooperation and Development Co-operative Research Programme to J.-L. J. and by USDA-NRI grant number 2003-35300-13202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Jannink.

Appendices

Appendix A

In this Appendix, we show that the contrast between parental versus recombinant haplotype effects cannot be greater in magnitude than the magnitude of the smaller single-locus main effect. Consider the two-locus linear model \( y_{i} = \mu + x_{i1} \beta _{1} + x_{i2} \beta _{2} + x_{i1} x_{i2} \varepsilon _{12} + e_{i} , \) where β 1 and β 2 are single-locus main effects and ε 12 is the contrast between parental versus recombinant haplotype effects and x i1 and x i2 are defined as in the text. Then \( \hat{\beta }_{1} = \tfrac{1}{4}\left( {\bar{y}_{ + + } + \bar{y}_{ + - } - \bar{y}_{ - + } - \bar{y}_{ - - } } \right), \) \( \hat{\beta }_{2} = \tfrac{1}{4}\left( {\bar{y}_{ + + } - \bar{y}_{ + - } + \bar{y}_{ - + } - \bar{y}_{ - - } } \right), \) \( \hat{\varepsilon }_{12} = \tfrac{1}{4}\left( {\bar{y}_{ + + } - \bar{y}_{ + - } - \bar{y}_{ - + } + \bar{y}_{ - - } } \right). \)Without loss of generality, constrain \( \bar{y}_{ - - } = 0, \) \( 0 \le \bar{y}_{ + - } \le \bar{y}_{ + + } , \) and \( 0 \le \bar{y}_{ - + } \le \bar{y}_{ + + } \) and suppose \( \bar{y}_{ + - } > \bar{y}_{ - + } \) such that \( \hat{\beta }_{1} > \hat{\beta }_{2} \ge 0.\) We want to show that \( \left| {\hat{\varepsilon }_{12} } \right| \le \hat{\beta }_{2}.\) If \( \hat{\varepsilon }_{12} > 0, \) then \( \hat{\beta }_{2} - \left| {\hat{\varepsilon }_{12} } \right| = \tfrac{1}{2}\bar{y}_{ - + } \ge 0, \) such that the condition is met. If \( \hat{\varepsilon }_{12} > 0, \) then \( \hat{\beta }_{2} - \left| {\hat{\varepsilon }_{12} } \right| = \tfrac{1}{2}\left( {\bar{y}_{ + + } - \bar{y}_{ + - } } \right) \ge 0, \) such that the condition is again met.

Appendix B

In this Appendix, we show that the probability that a redundant locus carries the favorable allele conditional on the phenotypic value can be decomposed as

$$ p\left( {x_{ir} = 1\left| {y_{i} } \right.} \right) = p\left( {x_{ir} = 1\left| {x_{iq} = 1 \cup\,x_{ir} = 1} \right.} \right) \times p\left( {x_{iq} = 1 \cup\,x_{ir} = 1\left| {y_{i} } \right.} \right) $$

We show the complete development then describe its steps.

$$ \begin{aligned} p\left( {x_{ir} = 1\left| {y_{i} } \right.} \right) & = \frac{{p\left( {x_{ir} = 1,y_{i} } \right)}}{{p\left( {y_{i} } \right)}} \\ & = \frac{{p\left( {x_{ir} = 1,x_{iq} = 1 \cup x_{ir} = 1,y_{i} } \right)}}{{p\left( {y_{i} } \right)}} \\ & = \frac{{p\left( {x_{ir} = 1,x_{iq} = 1 \cup x_{ir} = 1,y_{i} } \right)}}{{p\left( {x_{iq} = 1 \cup x_{ir} = 1,y_{i} } \right)}} \times \frac{{p\left( {x_{iq} = 1 \cup x_{ir} = 1,y_{i} } \right)}}{{p\left( {y_{i} } \right)}} \\ & = \frac{{p\left( {x_{ir} = 1,x_{iq} = 1 \cup x_{ir} = 1} \right)}}{{p\left( {x_{iq} = 1 \cup x_{ir} = 1} \right)}} \times \frac{{p\left( {x_{iq} = 1 \cup x_{ir} = 1,y_{i} } \right)}}{{p\left( {y_{i} } \right)}} \\ = p\left( {x_{ir} = 1\left| {x_{iq} = 1 \cup x_{ir} = 1} \right.} \right)p\left( {x_{iq} = 1 \cup x_{ir} = 1\left| {y_{i} } \right.} \right) \\ \end{aligned} $$

The transition from line one to two follows because P(A, A ∪ B) = P(A). The transition from line two to three follows by simple algebraic manipulation. The transition from line three to four uses the fact that x ir  = 1 is independent of y i , conditional on x iq  = 1 ∪x ir  = 1. That is, \( p\left( {x_{ir} = 1\left| {x_{iq} = 1 \cup\,x_{ir} = 1,y_{i} } \right.} \right) = p\left( {x_{ir} = 1,\left| {x_{iq} = 1 \cup x_{ir} = 1} \right.} \right).\) Finally, the transition from line four to five follows from the definition of conditional probability.

To see the independence of x ir  = 1 from y i conditional on x iq  = 1 ∪ x ir  = 1, note that, because of the redundancy relationship between loci q and r,

$$ p\left( {y_{i} \left| {x_{ir} = 1} \right.} \right) = p\left( {y_{i} \left| {x_{iq} = 1 \cup\,x_{ir} = 1} \right.} \right) $$

Consequently,

$$ p\left( {y_{i} ,x_{iq} = 1 \cup\,x_{ir} = 1} \right) = \frac{{p\left( {x_{iq} = 1 \cup\,x_{ir} = 1} \right)p\left( {y_{i} ,x_{ir} = 1} \right)}}{{p\left( {x_{ir} = 1} \right)}}. $$

Therefore,

$$ \begin{aligned} p\left( {x_{ir} = 1\left| {x_{iq} = 1 \cup\,x_{ir} = 1,y_{i} } \right.} \right) & = \frac{{p\left( {x_{ir} = 1,x_{iq} = 1 \cup\,x_{ir} = 1,y_{i} } \right)}}{{p\left( {x_{iq} = 1 \cup\,x_{ir} = 1,y_{i} } \right)}} \\ & = \frac{{p\left( {x_{ir} = 1,x_{iq} = 1 \cup\,x_{ir} = 1,y_{i} } \right)p\left( {x_{ir} = 1} \right)}}{{p\left( {x_{iq} = 1 \cup\,x_{ir} = 1} \right)p\left( {x_{ir} = 1,y_{i} } \right)}} \\ & = \frac{{p\left( {x_{ir} = 1} \right)}}{{p\left( {x_{iq} = 1 \cup\,x_{ir} = 1} \right)}} \\ & = p\left( {x_{ir} = 1\left| {x_{iq} = 1 \cup\,x_{ir} = 1} \right.} \right) \\ \end{aligned}. $$

This equality defines conditional independence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jannink, JL., Moreau, L., Charmet, G. et al. Overview of QTL detection in plants and tests for synergistic epistatic interactions. Genetica 136, 225–236 (2009). https://doi.org/10.1007/s10709-008-9306-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9306-2

Keywords

Navigation