Skip to main content
Log in

Efficiency of mapping epistatic quantitative trait loci

  • Article
  • Published:
Heredity Submit manuscript

Abstract

Most theoretical studies on epistatic QTL mapping have shown that this procedure is powerful, efficient to control the false positive rate (FPR), and precise to localize QTLs. The objective of this simulation-based study was to show that mapping epistatic QTLs is not an almost-perfect process. We simulated 50 samples of 400 F2 plants/recombinant inbred lines, genotyped for 975 SNPs distributed in 10 chromosomes of 100 cM. The plants were phenotyped for grain yield, assuming 10 epistatic QTLs and 90 minor genes. Adopting basic procedures of r/qtl package, we maximized the power of detection for QTLs (56–74%, on average) but associated with a very high FPR (65%) and a low detection power for the epistatic pairs (7%). Increasing the average detection power for epistatic pairs (14%) highly increased the related FPR. Adopting a procedure to find the best balance between power and FPR, there was a significant decrease in the power of QTL detection (17–31%, on average), associated with a low average detection power for epistatic pairs (8%) and an average FPR of 31% for QTLs and 16% for epistatic pairs. The main reasons for these negative results are a simplified specification of the coefficients of epistatic effects, as theoretically proved, and the effects of minor genes since 2/3 of the FPR for QTLs were due to them. We hope that this study, including the partial derivation of the coefficients of epistatic effects, motivates investigations on how to increase the power of detection for epistatic pairs, effectively controlling the FPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The dataset is available at https://doi.org/10.6084/m9.figshare.19242855.

References

  • Andrade ACB, Viana JMS, Pereira HD, Pinto VB, Fonseca ESF (2019) Linkage disequilibrium and haplotype block patterns in popcorn populations. PLoS One 14(9):e0219417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balestre M, de Souza Jr CL (2016) Bayesian reversible-jump for epistasis analysis in genomic studies. BMC Genomics 17(1):1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Boer MP, Braak CJF, Jansen RC (2002) A penalized likelihood method for mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 162:951–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broman KW, Sen S (2009). A guide to QTL mapping with R/qtl. Springer

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19(7):889–890

    Article  CAS  PubMed  Google Scholar 

  • Carlborg O, Andersson L, Kinghorn B (2000) The use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait loci. Genetics 155:2003–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Tai LY, Luo L, Xiang J, Zhao ZW (2021) Mapping QTLs for yield component traits using overwintering cultivated rice. J Genet 100:2

    Article  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996). Introduction to quantitative genetics, 4th edn. Longman

  • Goto T, Ishikawa A, Nishibori M, Tsudzuki M (2019) A longitudinal quantitative trait locus mapping of chicken growth traits. Mol Genet Genomics 294(1):243–252

    Article  CAS  PubMed  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:15–324

    Article  Google Scholar 

  • Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive genetic variance for complex traits. PLos Genet 4:2

    Article  Google Scholar 

  • Hu ST, Wang M, Zhang X, Chen WK, Song XR, Fu XY et al. (2021) Genetic basis of kernel starch content decoded in a maize multi-parent population. Plant Biotechnol J 19(11):2192–2205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jannink J-L, Jansen R (2001) Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 157:445–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kao C-H, Zeng Z-B, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kao CH, Zeng ZB (2002) Modeling epistasis of quantitative trait loci using Cockerham’s model. Genetics 160(3):1243–1261

    Article  PubMed  PubMed Central  Google Scholar 

  • Kempthorne O (1954) The theoretical values of correlations between relatives in random mating populations. Genetics 40:153–167

    Article  Google Scholar 

  • Kempthorne O (1973) An introduction to genetic statistics. The Iowa State University Press, Ames

    Google Scholar 

  • Laurie C, Wang S, Carlini-Garcia LA, Zeng ZB (2014) Mapping epistatic quantitative trait loci. BMC Genet 15:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Li JC, Huang W, Cao HJ, Xiao GL, Zhou J, Xie CH et al. (2018) Additive and epistatic QTLs underlying the dormancy in a diploid potato population across seven environments. Sci Hortic 240:578–584

    Article  Google Scholar 

  • Mackay TFC (2014) Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet 15(1):22–33

    Article  CAS  PubMed  Google Scholar 

  • Maki-Tanila A, Hill WG (2014) Influence of gene interaction on complex trait variation with multilocus models. Genetics 198(1):355–367

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3(3):269–283

    Article  Google Scholar 

  • Pereira HD, Viana JMS, Andrade ACB, Silva FFE, Paes GP (2018) Relevance of genetic relationship in GWAS and genomic prediction. J Appl Genet 59(1):1–8

    Article  PubMed  Google Scholar 

  • Sen S, Churchill GA (2001) A statistical framework for quantitative trait mapping. Genetics 159:371–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadmor-Levi R, Hulata G, David L (2019) Multiple interacting QTLs affect disease challenge survival in common carp (Cyprinus carpio). Heredity 123(5):565–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viana JMS (2004) Quantitative genetics theory for non-inbred populations in linkage disequilibrium. Genet Mol Biol 27(4):594–601

    Article  CAS  Google Scholar 

  • Viana JMS, DeLima RO, Mundim GB, Teixeira Conde AB, Vilarinho AA (2013a) Relative efficiency of the genotypic value and combining ability effects on reciprocal recurrent selection. Theor Appl Genet 126(4):889–899

    Article  PubMed  Google Scholar 

  • Viana JMS, Garcia AAF (2022) Significance of linkage disequilibrium and epistasis on genetic variances in noninbred and inbred populations. BMC Genomics 23(1):286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viana JMS, Pereira HD, Mundim GB, Piepho HP, Silva FFE (2018) Efficiency of genomic prediction of non-assessed single crosses. Heredity 120(4):283–295

    Article  CAS  PubMed  Google Scholar 

  • Viana JMS, Risso LA, Oliveira deLima R, Fonseca e Silva F (2020) Factors affecting heterotic grouping with cross‐pollinating crops. Agron J 113:210–223

    Article  Google Scholar 

  • Viana JMS, Silva FF, Mundim GB, Azevedo CF, Jan HU (2017) Efficiency of low heritability QTL mapping under high SNP density. Euphytica 213(1):13

    Article  Google Scholar 

  • Viana JMS, Valente MSF, Silva FF, Mundim GB, Paes GP (2013b) Efficacy of population structure analysis with breeding populations and inbred lines. Genetica 141(7-9):389–399

    Article  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2011). WINDOWS QTL Cartographer

  • Wei WH, Knott S, Haley CS, de Koning DJ (2010) Controlling false positives in the mapping of epistatic QTL. Heredity 104(4):401–409

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1976). In: Pollak E, Kempthorne O, Bailey Jr TB (eds) International Conference on Quantitative Genetics. The Iowa State University Press, Ames, p 247–269

  • Xu YF, La GX, Fatima N, Liu ZH, Zhang LR, Zhao LF et al. (2021) Precise mapping of QTL for Hessian fly resistance in the hard winter wheat cultivar ‘Overland’. Theor Appl Genet 134(12):3951–3962

    Article  CAS  PubMed  Google Scholar 

  • Yang JW, Liu ZH, Chen Q, Qu YZ, Tang JH, Lubberstedt T et al. (2020) Mapping of QTL for grain yield components based on a DH population in maize. Sci Rep. 10:1

    Google Scholar 

  • Yi N, Xu S (2002) Mapping quantitative trait loci with epistatic effects. Genet Res 79:02

    Article  Google Scholar 

  • Yi N, Xu S, Allison DB (2003) Bayesian model choice and search strategies for mapping interacting quantitative trait loci. Genetics 165:867–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng ZB, Kao CH, Basten CJ (1999) Estimating the genetic architecture of quantitative traits. Genet Res 74(3):279–289

    Article  CAS  PubMed  Google Scholar 

  • Zuanetti DA, Milan LA (2022) Bayesian modeling for epistasis analysis using data-driven reversible jump. IEEE/ACM Trans Comput Biol Bioinform 19(3):1495–1506

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the National Council for Scientific and Technological Development (CNPq), the Brazilian Federal Agency for Support and Evaluation of Graduate Education (Capes; Finance Code 001), and the Foundation for Research Support of Minas Gerais State (Fapemig) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

JMSV designed the study, programmed the software, and revised the manuscript. CASS simulated and processed the data, and wrote the manuscript.

Corresponding author

Correspondence to José Marcelo Soriano Viana.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate editor: Chenwu Xu.

Appendix: The coefficients of the epistatic effects in F2 generation

Appendix: The coefficients of the epistatic effects in F2 generation

Assume that there is a QTL in two intervals with the independent assortment (due to independence or free recombination; Q1/q1 and Q2/q2). Assume also association for the two QTLs and the four flanking SNPs (A/a, B/b, C/c, and D/d) in the F1 (AQ1BCQ2D/aq1bcq2d). Assuming no interference, the F1 gamete probabilities in relation to the first QTL and their flanking markers are well known, given by:

$$P(AQ1B)={P}_{111}=P(aq1b)={P}_{000}=(1-{r}_{aq1})(1-{r}_{q1b})/2$$
$$P(Aq1b)={P}_{100}=P(aQ1B)={P}_{011}={r}_{aq1}(1-{r}_{q1b})/2$$
$$P(AQ1b)={P}_{110}=P(aq1B)={P}_{001}=(1-{r}_{aq1}){r}_{q1b}/2$$
$$P(Aq1B)={P}_{101}=P(aQ1b)={P}_{010}={r}_{aq1}{r}_{q1b}/2$$

Defining by R the F1 gamete probabilities in relation to the second QTL and their flanking markers, we have, for example,

$$P(Q1Q1Q2Q2|AABBCCDD)=\frac{P(AAQ1Q1BB)P(CCQ2Q2DD)}{P(AABB)P(CCDD)}=\frac{{P}_{111}^{2}{R}_{111}^{2}}{{P}_{1.1}^{2}{R}_{1.1}^{2}}$$

The expectation of the genotypic values for the F2 individuals with SNP genotype AABBCCDD is

$$\begin{array}{ll}E(G|AABBCCDD)\\ =P(Q1Q1Q2Q2|AABBCCDD)\left[\right.{m}_{1}+{m}_{2}+{a}_{1}+{a}_{2}\,+\,4({\alpha }_{Q1}{\alpha }_{Q2})\\ \quad+\,2({\alpha }_{Q1}{\delta }_{Q2Q2}) +2({\delta }_{Q1Q1}{\alpha }_{Q2})+({\delta }_{Q1Q1}{\delta }_{Q2Q2})\left]\right.+ \ldots \\ \quad+\,P(q1q1q2q2|AABBCCDD)\left[\right.{m}_{1}+{m}_{2}-{a}_{1}-{a}_{2}\,+\,4({\alpha }_{q1}{\alpha }_{q2})\\ \quad +\,2({\alpha }_{q1}{\delta }_{q2q2})+ 2({\delta }_{q1q1}{\alpha }_{q2})+({\delta }_{q1q1}{\delta }_{q2q2})\left]\right.\\ ={m}_{1}+{m}_{2}+{\alpha }_{1}{a}_{1}+{\alpha }_{2}{a}_{2}+{\delta }_{1}{d}_{1}+{\delta }_{2}{d}_{2}+{I}_{2222}\end{array}$$

where

$$\begin{array}{ll}{\alpha }_{1}=\frac{{P}_{111}^{2}-{P}_{101}^{2}}{{P}_{1.1}^{2}}=\frac{{(1-{r}_{aq1})}^{2}{(1-{r}_{q1b})}^{2}-{r}_{aq1}^{2}{r}_{q1b}^{2}}{{(1-{r}_{aq1}-{r}_{q1b}+2{r}_{aq1}{r}_{q1b})}^{2}}\\ \quad\,\,=\frac{{(1-{r}_{aq1})}^{2}{(1-{r}_{q1b})}^{2}-{r}_{aq1}^{2}{r}_{q1b}^{2}}{{(1-{r}_{ab})}^{2}}\end{array}$$
$${\delta }_{1}=\frac{2{P}_{111}{P}_{101}}{{P}_{1.1}^{2}}=\frac{2{r}_{aq1}(1-{r}_{aq1}){r}_{q1b}(1-{r}_{q1b})}{{(1-{r}_{ab})}^{2}}$$
$${\alpha }_{2}=\frac{{R}_{111}^{2}-{R}_{101}^{2}}{{R}_{1.1}^{2}}=\frac{{(1-{r}_{cq2})}^{2}{(1-{r}_{q2d})}^{2}-{r}_{cq2}^{2}{r}_{q2d}^{2}}{{(1-{r}_{cd})}^{2}}$$
$${\delta }_{2}=\frac{2{R}_{111}{R}_{101}}{{R}_{1.1}^{2}}=\frac{2{r}_{cq2}(1-{r}_{cq2}){r}_{q2d}(1-{r}_{q2d})}{{(1-{r}_{cd})}^{2}}$$

and I2222 is the average epistatic value for the SNP genotype, given by

$$\begin{array}{ll}{I}_{2222}=(\frac{1}{{P}_{1.1}{R}_{1.1}})4\left[\right.{P}_{111}{R}_{111}({\alpha }_{Q1}{\alpha }_{Q2})+ {P}_{111}{R}_{101}({\alpha }_{Q1}{\alpha }_{q2})+{P}_{101}{R}_{111}({\alpha }_{q1}{\alpha }_{Q2})\\ \qquad\qquad\qquad\,\,+\,{P}_{101}{R}_{101}({\alpha }_{q1}{\alpha }_{q2})\left]\right.\\ \qquad\qquad\qquad\,\,+\,(\frac{1}{{P}_{1.1}{R}_{1.1}^{2}})2\left\{\right.{P}_{111}\left[\right.{R}_{111}^{2}({\alpha }_{Q1}{\delta }_{Q2Q2})+2{R}_{111}{R}_{101}({\alpha }_{Q1}{\delta }_{Q2q2})\\ \qquad\qquad\qquad\,\,+\,{R}_{101}^{2}({\alpha }_{Q1}{\delta }_{q2q2})\left]\right.\\ \qquad\qquad\qquad\,\,+\,{P}_{101}[{R}_{111}^{2}({\alpha }_{q1}{\delta }_{Q2Q2})+2{R}_{111}{R}_{101}({\alpha }_{q1}{\delta }_{Q2q2}) +{R}_{101}^{2}({\alpha }_{q1}{\delta }_{q2q2})]\left\}\right.\\ \qquad\qquad\qquad\,\,+\,(\frac{1}{{P}_{1.1}^{2}{R}_{1.1}})2\left\{\right.{R}_{111}\left[\right.{P}_{111}^{2}({\delta }_{Q1Q1}{\alpha }_{Q2})+2{P}_{111}{P}_{101}({\delta }_{Q1q1}{\alpha }_{Q2})\\ \qquad\qquad\qquad\,\,+{P}_{101}^{2}({\delta }_{q1q1}{\alpha }_{Q2})\left]\right.\\ \qquad\qquad\qquad\,\,+{R}_{101}\left[\right.{P}_{111}^{2}({\delta }_{Q1Q1}{\alpha }_{q2})+2{P}_{111}{P}_{101}({\delta }_{Q1q1}{\alpha }_{q2})\\ \qquad\qquad\qquad\,\,+{P}_{101}^{2}({\delta }_{q1q1}{\alpha }_{q2})\left]\right.\left\}\right.\\ \qquad\qquad\qquad\,\,+\,(\frac{1}{{P}_{1.1}^{2}{R}_{1.1}^{2}})\left\{\right.{P}_{111}^{2}\left[\right.{R}_{111}^{2}({\delta }_{Q1Q1}{\delta }_{Q2Q2})\\ \qquad\qquad\qquad\,\,+\,2{R}_{111}{R}_{101}({\delta }_{Q1Q1}{\delta }_{Q2q2})+{R}_{101}^{2}({\delta }_{Q1Q1}{\delta }_{q2q2})\left]\right.\\ \qquad\qquad\qquad\,\,+\,2{P}_{111}{P}_{101}[{R}_{111}^{2}({\delta }_{Q1q1}{\delta }_{Q2Q2}) +2{R}_{111}{R}_{101}({\delta }_{Q1q1}{\delta }_{Q2q2})+{R}_{101}^{2}({\delta }_{Q1q1}{\delta }_{q2q2})]\\ \qquad\qquad\qquad\,\,+\,{P}_{101}^{2}\left[\right.{R}_{111}^{2}({\delta }_{q1q1}{\delta }_{Q2Q2})\\ \qquad\qquad\qquad\,\,+\,2{R}_{111}{R}_{101}({\delta }_{q1q1}{\delta }_{Q2q2})+{R}_{101}^{2}({\delta }_{q1q1}{\delta }_{q2q2})\left]\right.\left\}\right.\end{array}$$

Note that the coefficients of the a and d deviations are those presented by Haley and Knott (1992). Kempthorne’s assumptions are (since p1 = p2 = 1/2):

(i) restrictions for the AA effects: 1) (αQ1 αQ2)+(αQ1 αq2) = 0; 2) (αq1 αQ2)+(αq1 αq2) = 0; 3) (αQ1 αQ2)+(αq1 αQ2) = 0; and 4) (αQ1 αq2)+(αq1 αq2) = 0.

(ii) restrictions for the AD effects: 1) (αQ1 δQ2Q2)+(αQ1 δQ2q2) = 0; 2) (αQ1 δQ2q2)+(αQ1 δq2q2) = 0; 3) (αq1 δQ2Q2)+(αq1 δQ2q2) = 0; 4) (αq1 δQ2q2)+(αq1 δq2q2) = 0; 5) (αQ1 δQ2Q2)+(αq1 δQ2Q2) = 0; 6) (αQ1 δQ2q2)+(αq1 δQ2q2) = 0; and 7) (αQ1 δq2q2)+(αq1 δq2q2) = 0 (six out of the seven are independent).

(iii) restrictions for the DA effects: 1) (δQ1Q1 αQ2)+(δQ1q1 αQ2) = 0; 2) (δQ1q1 αQ2)+(δq1q1 αQ2) = 0; 3) (δQ1Q1 αq2)+(δQ1q1 αq2) = 0; 4) (δQ1q1 αq2)+(δq1q1 αq2) = 0; 5) (δQ1Q1 αQ2)+(δQ1Q1 αq2) = 0; 6) (δQ1q1 αQ2)+(δQ1q1 αq2) = 0; and 7) (δq1q1 αQ2)+(δq1q1 αq2) = 0 (six out of the seven are independent).

(iv) restrictions for the DD effects: 1) (δQ1Q1 δQ2Q2)+(δQ1Q1 δQ2q2) = 0; 2) (δQ1Q1 δQ2q2)+(δQ1Q1 δq2q2) = 0; 3) (δQ1q1 δQ2Q2)+(δQ1q1 δQ2q2) = 0; 4) (δQ1q1 δQ2q2)+(δQ1q1 δq2q2) = 0; 5) (δq1q1 δQ2Q2)+(δq1q1 δQ2q2) = 0; 6) (δq1q1 δQ2q2)+(δq1q1 δq2q2) = 0; 7) (δQ1Q1 δQ2Q2)+(δQ1q1 δQ2q2) = 0; 8) (δQ1q1 δQ2Q2)+(δq1q1 δQ2Q2) = 0; 9) (δQ1Q1 δQ2q2)+(δQ1q1 δQ2q2)=0; 10) (δQ1q1 δQ2q2)+(δq1q1 δQ2q2) = 0; 11) (δQ1Q1 δq2q2)+(δQ1q1 δq2q2)=0; and 12) (δQ1q1 δq2q2)+(δq1q1 δq2q2) = 0 (nine out of the 12 are independent).

Using the restrictions, I2222 can be expressed as follows:

$$\begin{array}{c}{I}_{2222}=4(\frac{{P}_{111}}{{P}_{1.1}})(\frac{{R}_{111}}{{R}_{1.1}}){\alpha }_{1}{\alpha }_{2}({\alpha }_{Q1}{\alpha }_{Q2})+2(\frac{{P}_{111}}{{P}_{1.1}}){\alpha }_{1}(1-2{\delta }_{2})({\alpha }_{Q1}{\delta }_{Q2Q2})\\ \qquad\qquad\qquad+ \,2(\frac{{R}_{111}}{{R}_{1.1}})(1-2{\delta }_{1}){\alpha }_{2}({\delta }_{Q1Q1}{\alpha }_{Q2})- (1-2{\delta }_{1})(1-2{\delta }_{2})({\delta }_{Q1Q1}{\delta }_{Q2Q2})\end{array}$$

Thus, the coefficients for the additive × additive, additive × dominance, dominance × additive, and dominance × dominance effects are not given by the product of the coefficients of the additive and dominance effects. Assuming incomplete linkage between the SNPs B/b and C/c (0 < rbc < 1/2), we have

$$\scriptstyle\begin{array}{c}P(Q1Q1Q2Q2|AABBCCDD)\,=\,\frac{P{(AQ1BCQ2D)}^{2}}{P{(ABCD)}^{2}}= \frac{{P}_{111}^{2}{[2(1-{r}_{bc})]}^{2}{R}_{111}^{2}}{{P}_{1.1}^{2}{[2(1-{r}_{bc})]}^{2}{R}_{1.1}^{2}}=\frac{{P}_{111}^{2}{R}_{111}^{2}}{{P}_{1.1}^{2}{R}_{1.1}^{2}}\end{array}$$

since \(P(AQ1BCQ2D)=P(A).P(Q1|A).P(B|Q1).P(C|B).P(Q2|C).P(D|Q2)=(1/2).(1-{r}_{aq1}).(1-{r}_{q1b}).(1-{r}_{bc}).(1-{r}_{cq2}).(1-{r}_{q2d})={P}_{111}.(1-{r}_{bc}).2{R}_{111}\). Assuming complete linkage (rbc = 0), the probability is the same, but there will be 32 and not 64 gametes for the F1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viana, J.M.S., Souza, C.A.S. Efficiency of mapping epistatic quantitative trait loci. Heredity 131, 25–32 (2023). https://doi.org/10.1038/s41437-023-00618-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41437-023-00618-5

  • Springer Nature Switzerland AG

Navigation