Skip to main content
Log in

Examining the potential of open source remote sensing for building effective decision support systems for precision agriculture in resource-poor settings

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

Precision agriculture (PA) has become increasingly important to farmers particularly in resource-poor and risk-prone settings in the developing world. However, due to cost and technical constraints, deploying PA infrastructure as decision support systems (DSSs) in smallholder farming settings is often hindered. This paper draws on freely available satellite data (Sentinel-2A) and software (SNAP Toolbox), within the framework of open source remote sensing (OSRS) to demonstrate the potential of monitoring crop health and development towards building an effective DSS to inform farm management and resource allocation decision making using the Tono Irrigation Scheme—a resource-poor rural irrigation system in Ghana, as a case study. We find that vegetation index algorithms in SNAP Toolbox can accurately identify biophysical and growth conditions of crops including chlorophyll content, nitrogen status, pest and disease infestation, and water requirements. Despite the potential inherent in this novel cost-effective OSRS-based monitoring system, basic training of scheme managers and extension officers is required to enable them interpret output from OSRS analysis. Given the potential to reduce costs, improve allocation of scarce resources and increase yields, it is worth implementing OSRS as a DSS for smallholder farmers in other resource-poor settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The difference between crop yields observed at any given location and the crop’s potential yield at the same location given current agricultural practices and technologies (Foley et al. 2011:339).

References

  • Adhikari, P., Araya, H., Aruna, G., Balamatti, A., Banerjee, S., Baskaran, P., et al. (2018). System of crop intensification for more productive, resource-conserving, climate-resilient, and sustainable agriculture: Experience with diverse crops in varying agroecologies. International Journal of Agricultural Sustainability,16(1), 1–28.

    Google Scholar 

  • Anim-Gyampo, M., Kumi, M., & Zango, M. S. (2013). Heavy metals concentrations in some selected fish species in Tono Irrigation Reservoir in Navrongo, Ghana. Journal of Environment and Earth Science,3(1), 109–119.

    Google Scholar 

  • Asare, B. (2002). Local involvement in rural development: The Tono irrigation scheme in Ghana. Development in Practice, 12(2), 218–223.

    Google Scholar 

  • Barnes, E. M., Clarke, T. R., Richards, S. E., Colaizzi, P. D., Haberland, J., Kostrzewski, M., Thompson, T. (2000). Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA (Vol. 1619).

  • Bongiovanni, R., & Lowenberg-DeBoer, J. (2004). Precision agriculture and sustainability. Precision Agriculture,5(4), 359–387.

    Google Scholar 

  • Burkart, A., Hecht, V. L., Kraska, T., & Rascher, U. (2018). Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution. Precision Agriculture,19(1), 134–146.

    Google Scholar 

  • Câmara, G., & Onsrud, H. (2004). Open-source geographic information systems software: Myths and realities. In Open Access and the Public Domain in Digital Data and Information for Science: Proceedings of an International Symposium. National Research Council, US National Committee for CODATA, Washington, DC (pp. 127–133).

  • Cammarano, D., Fitzgerald, G., Basso, B., O’Leary, G., Chen, D., Grace, P., et al. (2011). Use of the Canopy Chlorophyl Content Index (CCCI) for remote estimation of wheat nitrogen content in rainfed environments. Agronomy Journal,103(6), 1597–1603.

    Google Scholar 

  • Cammarano, D., Fitzgerald, G. J., Casa, R., & Basso, B. (2014). Assessing the robustness of vegetation indices to estimate wheat N in Mediterranean environments. Remote Sensing,6(4), 2827–2844.

    Google Scholar 

  • Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing,7(4), 4026–4047.

    Google Scholar 

  • Carayannis, E. G., & Sagi, J. (2001). Dissecting the professional culture: Insights from inside the IT “black box”. Technovation,21(2), 91–98.

    Google Scholar 

  • Carberry, P. S., Hochman, Z., McCown, R. L., Dalgliesh, N. P., Foale, M. A., Poulton, P. L., et al. (2002). The FARMSCAPE approach to decision support: Farmers’, advisers’, researchers’ monitoring, simulation, communication and performance evaluation. Agricultural Systems,74(1), 141–177.

    Google Scholar 

  • Christophe, E., & Inglada, J. (2009). Open source remote sensing: Increasing the usability of cutting-edge algorithms. IEEE Geoscience and Remote Sensing Newsletter,35(5), 9–15.

    Google Scholar 

  • Clevers, J. G. P. W., & Kooistra, L. (2012). Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,5(2), 574–583.

    Google Scholar 

  • Congalton, R. G., & Green, K. (2009). Assessing the accuracy of remotely sensed data: Principles and practices (2nd ed.). Boca Raton: CRC/Taylor and Francis.

    Google Scholar 

  • Cox, P. G. (1996). Some issues in the design of agricultural decision support systems. Agricultural Systems,52(2–3), 355–381.

    Google Scholar 

  • Daughtry, C. S. T., Walthall, C. L., Kim, M. S., De Colstoun, E. B., & McMurtrey Iii, J. E. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment,74(2), 229–239.

    Google Scholar 

  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.

    Google Scholar 

  • De la Rosa, D., Mayol, F., Diaz-Pereira, E., Fernandez, M., & de la Rosa Jr, D. (2004). A land evaluation decision support system (MicroLEIS DSS) for agricultural soil protection: With special reference to the Mediterranean region. Environmental Modelling and Software,19(10), 929–942.

    Google Scholar 

  • Delegido, J., Verrelst, J., Alonso, L., & Moreno, J. (2011). Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors,11(7), 7063–7081.

    Google Scholar 

  • Dong, T., Meng, J., Shang, J., Liu, J., & Wu, B. (2015). Evaluation of chlorophyll-related vegetation indices using simulated Sentinel-2 data for estimation of crop fraction of absorbed photosynthetically active radiation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,8(8), 4049–4059.

    Google Scholar 

  • Earle, N., & Keen, P. G. W. (2002). From. com to. profit: Inventing business models that deliver value and profit. Hoboken: Wiley.

    Google Scholar 

  • Ejeta, G. (2010). African Green Revolution needn’t be a mirage. Science,327(5967), 831–832.

    Google Scholar 

  • El-Shikha, D. M., Waller, P., Hunsaker, D., Clarke, T., & Barnes, E. (2007). Ground-based remote sensing for assessing water and nitrogen status of broccoli. Agricultural Water Management,92(3), 183–193.

    Google Scholar 

  • ESA. (2018). ESA Sentinel Application Platform v6.0.0.

  • Espinoza, C. Z., Khot, L. R., Sankaran, S., & Jacoby, P. W. (2017). High resolution multispectral and thermal remote sensing-based water stress Assessment in subsurface irrigated grapevines. Remote Sensing,9(9), 961.

    Google Scholar 

  • Fitzgerald, G. J., Rodriguez, D., Christensen, L. K., Belford, R., Sadras, V. O., & Clarke, T. R. (2006). Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precision Agriculture,7(4), 233–248.

    Google Scholar 

  • Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., et al. (2011). Solutions for a cultivated planet. Nature,478(7369), 337.

    Google Scholar 

  • Gebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. Science,327(5967), 828–831.

    Google Scholar 

  • Georgellis, Y., & Lange, T. (2007). Participation in continuous, on-the-job training and the impact on job satisfaction: Longitudinal evidence from the German labour market. The International Journal of Human Resource Management,18(6), 969–985.

    Google Scholar 

  • Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment,58(3), 289–298.

    Google Scholar 

  • Gitelson, A., & Merzlyak, M. N. (1994). Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology B: Biology,22(3), 247–252.

    Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: The challenge of feeding 9 billion people. Science,327(5967), 812–818.

    Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (2007). Image processing. Digital Image Processing, 2, 81–128.

    Google Scholar 

  • Grabowski, P. P., & Kerr, J. M. (2014). Resource constraints and partial adoption of conservation agriculture by hand-hoe farmers in Mozambique. International Journal of Agricultural Sustainability,12(1), 37–53.

    Google Scholar 

  • GSS. (2014). 2010 population and housing census: District analytical report. Kasena Nankana East Municipality. Ghana Statistical Service. Accra -Ghana. http://www.statsghana.gov.gh/docfiles/2010_District_Report/Upper%20East/KASENA%20NANKANA%20EAST.pdf.

  • Guo, C., Zhang, L., Zhou, X., Zhu, Y., Cao, W., Qiu, X., et al. (2018). Integrating remote sensing information with crop model to monitor wheat growth and yield based on simulation zone partitioning. Precision Agriculture,19(1), 55–78.

    Google Scholar 

  • Heller, E., Rhemtulla, J. M., Lele, S., Kalacska, M., Badiger, S., Sengupta, R., et al. (2012). Mapping crop types, irrigated areas, and cropping intensities in heterogeneous landscapes of Southern India using multi-temporal medium-resolution imagery. Photogrammetric Engineering & Remote Sensing,78(8), 815–827.

    Google Scholar 

  • ICOUR. (1989). ICOUR Information Handbook. Ghana: ICOUR Ltd.

    Google Scholar 

  • Immitzer, M., Vuolo, F., & Atzberger, C. (2016). First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sensing,8(3), 166.

    Google Scholar 

  • Inglada, J., Arias, M., Tardy, B., Hagolle, O., Valero, S., Morin, D., et al. (2015). Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery. Remote Sensing,7(9), 12356–12379.

    Google Scholar 

  • Jacobs, R. (2003). Structured on-the-job training: Unleashing employee expertise in the workplace. San Francisco: Berrett-Koehler Publishers.

    Google Scholar 

  • Jensen, J. R. (2016). Introduction to digital image processing: A remote sensing perspective (4th ed.). South Carolina: Pearson.

    Google Scholar 

  • Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., et al. (2003). The DSSAT cropping system model. European Journal of Agronomy,18(3–4), 235–265.

    Google Scholar 

  • Kang, S.-G., Yoo, H.-Y., & Lee, K.-W. (2012). Open source remote sensing: Introspect and prospect. Journal of Marine Science and Technology,20(6), 613–617.

    Google Scholar 

  • Kansanga, M. M. (2017). Who you know and when you plough? Social capital and agricultural mechanization under the new green revolution in Ghana. International Journal of Agricultural Sustainability,15(6), 708–723.

    Google Scholar 

  • Kansanga, M., Andersen, P., Atuoye, K., & Mason-Renton, S. (2018a). Contested commons: Agricultural modernization, tenure ambiguities and intra-familial land grabbing in Ghana. Land Use Policy,75, 215–224.

    Google Scholar 

  • Kansanga, M., Andersen, P., Kpienbaareh, D., Mason-Renton, S., Atuoye, K., Sano, Y., et al. (2018b). Traditional agriculture in transition: Examining the impacts of agricultural modernization on smallholder farming in Ghana under the new Green Revolution. International Journal of Sustainable Development & World Ecology. https://doi.org/10.1080/13504509.2018.1491429.

    Article  Google Scholar 

  • Kerr, D. (2004). Factors influencing the development and adoption of knowledge based decision support systems for small, owner-operated rural business. Artificial Intelligence Review,22(2), 127–147.

    Google Scholar 

  • Lebourgeois, V., Dupuy, S., Vintrou, É., Ameline, M., Butler, S., & Bégué, A. (2017). A combined random forest and OBIA classification scheme for mapping smallholder agriculture at different nomenclature levels using multisource data (simulated sentinel-2 time series, VHRS and DEM). Remote Sensing,9(3), 259.

    Google Scholar 

  • Lee, K. (2010). Uses of open source remote sensing software for interoperable geo-web implementation.

  • Li, F., Miao, Y., Feng, G., Yuan, F., Yue, S., Gao, X., et al. (2014). Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Research,157, 111–123.

    Google Scholar 

  • Lim, P. O., & Nam, H. G. (2007). Aging and senescence of the leaf organ. Journal of Plant Biology,50(3), 291–300.

    Google Scholar 

  • Lindblom, J., Lundström, C., Ljung, M., & Jonsson, A. (2017). Promoting sustainable intensification in precision agriculture: Review of decision support systems development and strategies. Precision Agriculture,18(3), 309–331.

    Google Scholar 

  • Liu, J. G. (2000). Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details. International Journal of Remote Sensing, 21(18), 3461–3472.

    Google Scholar 

  • Lundström, C., & Lindblom, J. (2016). Considering farmers’ situated expertise in using AgriDSS to fostering sustainable farming practices in precision agriculture. In 13th International Conference on Precison Agriculture, July 31August 3, 2016, St. Louis, Missouri, USA.

  • Madrid, J. M., Munera, L. E., Montoya, C. A., Osorio, J. D., Cardenas, L. E., Bedoya, R., & Latorre, C. (2009). Functionality, reliability and adaptability improvements to the OSSIM information security console. In IEEE Latin-American Conference on Communications, 2009 LATINCOM’09. (pp. 1–6). IEEE.

  • Mahlein, A.-K. (2016). Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping. Plant Disease,100(2), 241–251.

    Google Scholar 

  • Mahlein, A.-K., Oerke, E.-C., Steiner, U., & Dehne, H.-W. (2012). Recent advances in sensing plant diseases for precision crop protection. European Journal of Plant Pathology,133(1), 197–209.

    Google Scholar 

  • Marongwe, L. S., Kwazira, K., Jenrich, M., Thierfelder, C., Kassam, A., & Friedrich, T. (2011). An African success: The case of conservation agriculture in Zimbabwe. International Journal of Agricultural Sustainability,9(1), 153–161.

    Google Scholar 

  • Matthews, K. B., Sibbald, A. R., & Craw, S. (1999). Implementation of a spatial decision support system for rural land use planning: Integrating geographic information system and environmental models with search and optimisation algorithms. Computers and Electronics in Agriculture,23(1), 9–26.

    Google Scholar 

  • May, S., & Inglada, J. (2009). Urban area detection and segmentation using OTB. In Geoscience and Remote Sensing Symposium, 2009 IEEE International, IGARSS 2009 (Vol. 4, p. IV-928). IEEE.

  • McFadden, B. R., Brorsen, B. W., & Raun, W. R. (2018). Nitrogen fertilizer recommendations based on plant sensing and Bayesian updating. Precision Agriculture,19(1), 79–92.

    Google Scholar 

  • Mdemu, M. V., Rodgers, C., Vlek, P. L. G., & Borgadi, J. J. (2009). Water productivity (WP) in reservoir irrigated schemes in the upper east region (UER) of Ghana. Physics and Chemistry of the Earth, Parts A/B/C,34(4–5), 324–328.

    Google Scholar 

  • MoFA. (2017). Tono irrigation scheme.

  • Moreno, R. (2015). NCAR Geospatial Talks Series. Free and Open Source Software for Geospatial Applications (FOSS4G).

  • Nolan, R. L., & Croson, D. C. (1995). Creative destruction: A six-stage process for transforming the organization. Brighton: Harvard Business Press.

    Google Scholar 

  • O’Flynn, B., De Donno, M., Barrett, C., Robinson, C., & Riordan, A. O. (2017). Smart microneedle sensing systems for security in agriculture, food and the environment (SAFE). In SENSORS, 2017 IEEE (pp. 1–3). IEEE.

  • Pretty, J. N., Noble, A. D., Bossio, D., Dixon, J., Hine, R. E., Penning de Vries, F. W. T., & Morison, J. I. L. (2006). Resource-conserving agriculture increases yields in developing countries. ACS Publications

  • Pretty, J., Toulmin, C., & Williams, S. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability,9(1), 5–24.

    Google Scholar 

  • Purkis, S. J., & Klemas, V. V. (2011). Remote sensing and global environmental change. Hoboken: Wiley.

    Google Scholar 

  • Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment,48(2), 119–126.

    Google Scholar 

  • Robert, P. C. (2002). Precision agriculture: a challenge for crop nutrition management. In Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium (pp. 143–149). Springer.

  • Rouse Jr, J., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS.

  • Say, S. M., Keskin, M., Sehri, M., & Sekerli, Y. E. (2018). Adoption of precision agriculture technologies in developed and developing countries. The Online Journal of Science and Technology-January,8(1), 7–15.

    Google Scholar 

  • Schimmelpfennig, D. (2018). Precision Agriculture Technologies and Factors Affecting Their Adoption. Design Issues, 3, 0

  • Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production,88, 297–307.

    Google Scholar 

  • Stroppiana, D., Bordogna, G., Carrara, P., Boschetti, M., Boschetti, L., & Brivio, P. A. (2012). A method for extracting burned areas from Landsat TM/ETM + images by soft aggregation of multiple Spectral Indices and a region growing algorithm. ISPRS Journal of Photogrammetry and Remote Sensing,69, 88–102.

    Google Scholar 

  • Tampoare, G. B., Milliar, G. K. B., & Adazabra, A. N. (2012). Analyzing the economic benefit of fresh tomato production at the Tono irrigation scheme in upper east region of Ghana. Journal of Economics and Sustainable Development,3(13), 15–22.

    Google Scholar 

  • Thenkabail, P. S., Knox, J. W., Ozdogan, M., Gumma, M. K., Congalton, R. G., Wu, Z., et al. (2012). Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help? Photogrammetric Engineering and Remote Sensing,78(8), 773–782.

    Google Scholar 

  • Union for Concerned Scientist. (2016). Satellite information.

  • USGS. (2008). Landsat Data Distribution Policy. South Dakota.

  • Walker, D. H. (2002). Decision support, learning and rural resource management. Agricultural Systems,73(1), 113–127.

    Google Scholar 

  • Walker, D. H., Cowell, S. G., & Johnson, A. K. L. (2001). Integrating research results into decision making about natural resource management at a catchment scale. Agricultural Systems,69(1–2), 85–98.

    Google Scholar 

  • Wilson, P. (1994). Introducing CScw—what it is and why we need it. Brookfield, VT: Computer-Supported Cooperative Work, Ashgate Pubilshing. http://www.wikipedia.org.

  • Wolf, P. R., Dewitt, B. A., & Wilkinson, B. E. (2000). Elements of Photogrammetry: With applications in GIS. New York: McGraw-Hill.

    Google Scholar 

  • Wright, P. R. (1998). Research into early senescence syndrome in cotton. Better Crops International,12(2), 15.

    Google Scholar 

  • Wu, C., Niu, Z., Tang, Q., & Huang, W. (2008). Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology,148(8–9), 1230–1241.

    Google Scholar 

  • Wu, J., Wang, D., & Bauer, M. E. (2007). Assessing broadband vegetation indices and QuickBird data in estimating leaf area index of corn and potato canopies. Field Crops Research,102(1), 33–42.

    Google Scholar 

  • Xu, X., Gu, X., Song, X., Li, C., & Huang, W. (2010). Assessing rice chlorophyll content with vegetation indices from hyperspectral data. In International Conference on Computer and Computing Technologies in Agriculture (pp. 296–303). Springer.

  • Yost, M. A., Kitchen, N. R., Sudduth, K. A., Sadler, E. J., Drummond, S. T., & Volkmann, M. R. (2017). Long-term impact of a precision agriculture system on grain crop production. Precision Agriculture,18(5), 823–842.

    Google Scholar 

  • Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture,13(6), 693–712.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Kpienbaareh.

Ethics declarations

Ethical approval

The study obtained ethical approval from the Council for Industrial and Scientific Research, Ghana. All procedures involving the conduct of interviews with the participants were observed and participants willingly took part in the study.

Conflict of interest

The authors declare no conflicts of interests

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kpienbaareh, D., Kansanga, M. & Luginaah, I. Examining the potential of open source remote sensing for building effective decision support systems for precision agriculture in resource-poor settings. GeoJournal 84, 1481–1497 (2019). https://doi.org/10.1007/s10708-018-9932-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-018-9932-x

Keywords

Navigation