Skip to main content

Agricultural Information Needs and Research Priorities for Remote Sensing in South and Southeast Asian Countries

  • Chapter
  • First Online:
Remote Sensing of Agriculture and Land Cover/Land Use Changes in South and Southeast Asian Countries

Abstract

This summary paper highlights agricultural information needs and priorities in South/Southeast Asian (S/SEA) countries. We distinguish two important agricultural information user groups – government agencies or policymakers and individual farmers. Both these groups are interested in information and data for different purposes. For example, government agencies and policymakers are most interested in addressing local, regional, or country-level food security and policy needs; in contrast, individual farmers are concerned with timely information on crop management relevant to field scale. This study discusses these needs, including capacity building and development, including strengthening cooperation among regional space agencies to address agricultural needs specific to S/SEA countries. The priorities summarized in this study were identified by the in-country researchers and practitioners, shared during several South/Southeast Asia Research Initiative (SARI) meetings and workshops organized since 2015. The rapid increase in agricultural technology in other parts of the world has a slower uptake in this region, which remains predominantly smallholder farming where the initial cost of such investments is prohibitive. Though there has been an increase in free and openly available satellite data, remote sensing remains a largely untapped tool to address national food security and individual farmer needs. Although several encouraging studies have appeared in recent literature on agricultural research and applications in S/SEA, those demonstration studies need to transition from research to operational products or systems useful for those involved in agricultural resource management. The study also calls for international cooperation to aid in transferring geospatial tools and technologies to assist in food security needs and sustainable agriculture in the many varied landscapes of S/SEA.

Dr. Shibendu Shankar Ray, a great friend, and colleague of the co-authors, tragically passed away on May 4th, 2021. Although Dr. Ray was involved in the early stages of this chapter, he was unable to participate in its completion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alauddin, M., & Quiggin, J. (2008). Agricultural intensification, irrigation and the environment in South Asia: Issues and policy options. Ecological Economics, 65(1), 111–124.

    Google Scholar 

  • Andrew Schmitz, P., Kennedy, L., & Schmitz, T. G. (2016). Food security in a food abundant world : An individual country perspective (1st ed.). Emerald Group Publishing Limited.

    Google Scholar 

  • Basso, B., Hyndman, D. W., Kendall, A. D., Grace, P. R., & Robertson, G. P. (2015). Can impacts of climate change and agricultural adaptation strategies be accurately quantified if crop models are annually re-initialized? PLoS One, 10(6), e0127333.

    Google Scholar 

  • Becker-Reshef, I., Justice, C., Barker, B., Humber, M., Rembold, F., Bonifacio, R., Zappacosta, M., Budde, M., Magadzire, T., Shitote, C., & Pound, J. (2020). Strengthening agricultural decisions in countries at risk of food insecurity: The GEOGLAM crop monitor for early warning. Remote Sensing of Environment, 237, 111553.

    Google Scholar 

  • Boogaard, H. L., Van Diepen, C. A., Rotter, R. P., Cabrera, J. M. C. A., & Van Laar, H. H. (1998) WOFOST 7.1; user’s guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.5 (No. 52). SC-DLO.

    Google Scholar 

  • Bouman, B. A. M., Kropff, M. J., Tuong, T. P., Wopereis, M. C. S., ten Berge, H. F. M., & Van Laar, H. H. (2001). ORYZA2000: Modeling lowland rice. International Rice Research Institute/Philippines and Wageningen University and Research Centre.

    Google Scholar 

  • Brodt, S., Six, J., Feenstra, G., Ingels, C., & Campbell, D. (2011). Sustainable agriculture. Nature Education Knowledge, 3(10), 1.

    Google Scholar 

  • Chandra, A. C., & Lontoh, L. A. (2010). Regional food security and trade policy in Southeast Asia: The role of ASEAN. International Institute for Sustainable Development. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.470.5618&rep=rep1&type=pdf

    Google Scholar 

  • Chipanshi, A. C., Ripley, E. A., & Lawford, R. G. (1999). Large-scale simulation of wheat yields in a semi-arid environment using a crop-growth model. Agricultural Systems, 59(1), 57–66.

    Google Scholar 

  • Cook, S. E., O’Brien, R., Corner, R. J., Oberthur, T., Stafford, J., & Werner, A. (2003). Is precision agriculture irrelevant to developing countries? In Precision Agriculture (pp. 115–120). Wageningen Academic.

    Google Scholar 

  • Cush, K., Koh, K., & Saikawa, E. (2021). Impacts of biomass and garbage burning on air quality in South/Southeast Asia. In K. P. Vadrevu, T. Ohara, & C. Justice (Eds.), Biomass burning in south and Southeast Asia: Impacts on the biosphere (Vol. 2, pp. 3–20). CRC Press.

    Google Scholar 

  • Debats, S. R., Luo, D., Estes, L. D., Fuchs, T. J., & Caylor, K. K. (2016). A generalized computer vision approach to mapping crop fields in heterogeneous agricultural landscapes. Remote Sensing of Environment, 179, 210–221.

    Google Scholar 

  • Dingle Robertson, L., Davidson, A., McNairn, H., Hosseini, M., Mitchell, S., De Abelleyra, D., Verón, S., & Cosh, M. H. (2020). Synthetic aperture radar (SAR) image processing for operational space-based agriculture mapping. International Journal of Remote Sensing, 41(18), 7112–7144.

    Google Scholar 

  • Dong, J., Xiao, X., Menarguez, M. A., Zhang, G., Qin, Y., Thau, D., Biradar, C., & Moore, B., III. (2016). Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sensing of Environment, 185, 142–154.

    Google Scholar 

  • Dressler, W., & Roth, R. (2011). The good, the bad, and the contradictory: Neoliberal conservation governance in rural Southeast Asia. World Development, 39(5), 851–862.

    Google Scholar 

  • Eaturu, A., & Vadrevu, K. P. (2021). Evaluation of Sentinel-3 SLSTR data for mapping fires in forests, peatlands and croplands – A case study over Australia, Indonesia and India. In Biomass burning in South and Southeast Asia. Taylor & Francis.

    Google Scholar 

  • ESA/CCI, (2020). https://maps.elie.ucl.ac.be/CCI/viewer/

  • FAO. (2010). State of food insecurity in the world. FAO/WFP https://www.fao.org/3/i1683e/i1683e00.htm

  • FAO. (2020). http://www.fao.org/3/y4252e/y4252e06.htm

  • Franch, B., Vermote, E., Skakun, S., Santamaria-Artigas, A., Kalecinski, N., Roger, J. C., Becker-Reshef, I., Barker, B., Justice, C., & Sobrino, J. A. (2021). The ARYA crop yield forecasting algorithm: Application to the main wheat exporting countries. International Journal of Applied Earth Observation and Geoinformation, 104, 102552.

    Google Scholar 

  • Grote, U. (2014). Can we improve global food security? A socio-economic and political perspective. Food Security, 6(2), 187–200.

    Google Scholar 

  • Gumma, M. K., Nelson, A., Thenkabail, P. S., & Singh, A. N. (2011). Mapping rice areas of South Asia using MODIS multitemporal data. Journal of Applied Remote Sensing, 5(1), 053547.

    Google Scholar 

  • Hansen, J. W., & Jones, J. W. (2000). Scaling-up crop models for climate variability applications. Agricultural Systems, 65(1), 43–72.

    Google Scholar 

  • Hain, C. R., Crow, W. T., Mecikalski, J. R., Anderson, M. C., & Holmes, T. (2011). An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling. Journal of Geophysical Research: Atmospheres, 116(D15). https://doi.org/10.1029/2011JD015633

  • Jain, N., Sehgal, V. K., Pathak, H., Kumar, O., & Dhakar, R. (2021). Greenhouse gas and particulate matter emissions from rice residue burning in Punjab and Haryana states of India. In: K. P. Vadrevu, T. Ohara, & C. Justice. (Eds.). Biomass Burning in South and Southeast Asia: Impacts on the Biosphere, Volume Two (pp. 171–190). CRC Press.

    Google Scholar 

  • Jolivot, A., Lebourgeois, V., Ameline, M., Andriamanga, V., Bellón, B., Castets, M., Crespin-Boucaud, A., Defourny, P., Diaz, S., Dieye, M., & Dupuy, S. (2021). Harmonized in situ JECAM datasets for agricultural land use mapping and monitoring in tropical countries. Earth System Science Data Discussions, 1–22. https://doi.org/10.5194/essd-2021-125

  • Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18(3–4), 235–265.

    Google Scholar 

  • Justice, C., Becker-Reshef, I., Barker, B., Sahajpal, R., & Magadzire, T. (2019, May–June). Increasing information access for food security monitoring: Overview of the GEOGLAM crop monitor for early warning (CM4EW). The NASA Earth Observer, 31(3), 4–14.

    Google Scholar 

  • Justice, C., Gutman, G., & Vadrevu, K. P. (2015). NASA land cover and land use change (LCLUC): An interdisciplinary research program. Journal of Environmental Management, 148(15), 4–9.

    Google Scholar 

  • Lam Dao, N., Le-Toan, T., Apan, A. A., Bouvet, A., Young, F., & Le-Van, T. (2009). Effects of changing rice cultural practices on C-band synthetic aperture radar backscatter using Envisat advanced synthetic aperture radar data in the Mekong River Delta. Journal of Applied Remote Sensing, 3(1), 033563.

    Google Scholar 

  • Lasko, K., & Vadrevu, K. (2018). Improved rice residue burning emissions estimates: Accounting for practice-specific emission factors in air pollution assessments of Vietnam. Environmental Pollution, 236, 795–806.

    Google Scholar 

  • Lasko, K., Vadrevu, K. P., Bandaru, V., Nguyen, T. N. T., & Bui, H. Q. (2021). PM2. 5 emissions from biomass burning in South/Southeast Asia – Uncertainties and trade-offs. In biomass burning in South and Southeast Asia (pp. 149–169). CRC Press.

    Google Scholar 

  • Lasko, K., Vadrevu, K. P., & Nguyen, T. T. N. (2018a). Analysis of air pollution over Hanoi, Vietnam using multi-satellite and MERRA reanalysis datasets. PLoS One, 13(5), e0196629.

    Google Scholar 

  • Lasko, K., Vadrevu, K. P., Tran, V. T., Ellicott, E., Nguyen, T. T., Bui, H. Q., & Justice, C. (2017). Satellites may underestimate rice residue and associated burning emissions in Vietnam. Environmental Research Letters, 12(8), 085006.

    Google Scholar 

  • Lasko, K., Vadrevu, K. P., Tran, V. T., & Justice, C. (2018b). Mapping double and single crop paddy rice with Sentinel-1A at varying spatial scales and polarizations in Hanoi, Vietnam. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(2), 498–512.

    Google Scholar 

  • Leroy, J. L., Ruel, M., Frongillo, E. A., Harris, J., & Ballard, T. J. (2015). Measuring the food access dimension of food security: a critical review and mapping of indicators. Food and nutrition bulletin, 36(2), 167–195.

    Google Scholar 

  • Le Toan, T., Laur, H., Mougin, E., & Lopes, A. (1989). Multitemporal and dual-polarization observations of agricultural vegetation covers by X-band SAR images. IEEE Transactions on Geoscience and Remote Sensing, 27(6), 709–718.

    Google Scholar 

  • Le Toan, T., Ribbes, F., Wang, L. F., Floury, N., Ding, K. H., Kong, J. A., Fujita, M., & Kurosu, T. (1997). Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Transactions on Geoscience and Remote Sensing., 35(1), 41–56.

    Google Scholar 

  • Lele, U., Masters, W. A., Kinabo, J., Meenakshi, J. V., Ramaswami, B., Tagwireyi, J., & Goswami, S. (2016). Measuring food and nutrition security: An independent technical assessment and user’s guide for existing indicators (p. 177). Food Security Information Network, Measuring Food and Nutrition Security Technical Working Group.

    Google Scholar 

  • Liu, C. A., Chen, Z. X., Yun, S. H. A. O., Chen, J. S., Hasi, T., & Pan, H. Z. (2019). Research advances of SAR remote sensing for agriculture applications: A review. Journal of Integrative Agriculture, 18(3), 506–525.

    Google Scholar 

  • Lobell, D. B., Thau, D., Seifert, C., Engle, E., & Little, B. (2015). A scalable satellite-based crop yield mapper. Remote Sensing of Environment, 164, 324–333.

    Google Scholar 

  • Lopez-Sanchez, J. M., & Ballester-Berman, J. D. (2009). Potentials of polarimetric SAR interferometry for agriculture monitoring. Radio Science, 44(02), 1–20.

    Google Scholar 

  • Maxwell, S. (1996). Food security: A post-modern perspective. Food Policy, 21(2), 155–170.

    Google Scholar 

  • McNairn, H., & Brisco, B. (2004). The application of C-band polarimetric SAR for agriculture: A review. Canadian Journal of Remote Sensing, 30(3), 525–542.

    Google Scholar 

  • Misselhorn, A., Aggarwal, P., Ericksen, P., Gregory, P., Horn-Phathanothai, L., Ingram, J., & Wiebe, K. (2012). A vision for attaining food security. Current Opinion in Environmental Sustainability, 4(1), 7–17.

    Google Scholar 

  • Mitchell, T. D., & Jones, P. D. (2005). An improved method of constructing a database of monthly climate observations and associated high‐resolution grids. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(6), 693–712.

    Google Scholar 

  • Miyan, M. A. (2015). Droughts in Asian least developed countries: Vulnerability and sustainability. Weather and Climate Extremes, 7, 8–23.

    Google Scholar 

  • Mondal, P., & Basu, M. (2009). Adoption of precision agriculture technologies in India and in some developing countries: Scope, present status and strategies. Progress in Natural Science, 19(6), 659–666.

    Google Scholar 

  • Mujumdar, M., Bhaskar, P., Ramarao, M. V. S., Uppara, U., Goswami, M., Borgaonkar, H., Chakraborty, S., Ram, S., Mishra, V., Rajeevan, M., & Niyogi, D. (2020). Droughts and floods. In Assessment of climate change over the Indian region (pp. 117–141). Springer.

    Google Scholar 

  • Nandargi, S., Dhar, O. N., Sheikh, M. M., Enright, B., & Mirza, M. M. Q. (2010). Hydrometeorology of floods and droughts in South Asia – A brief appraisal. In Global environmental changes in South Asia (pp. 244–257). Springer.

    Google Scholar 

  • Oanh, N. T. K., Permadi, D. A., Dong, N. P., & Nguyet, D. A. (2018). Emission of toxic air pollutants and greenhouse gases from crop residue open burning in Southeast Asia. In Land-atmospheric research applications in South and Southeast Asia (pp. 47–66). Springer.

    Google Scholar 

  • Oyoshi, K., Tomiyama, N., Okumura, T., Sobue, S., & Sato, J. (2016). Mapping rice-planted areas using time-series synthetic aperture radar data for the Asia-RiCE activity. Paddy and Water Environment, 14(4), 463–472.

    Google Scholar 

  • Persello, C., Tolpekin, V. A., Bergado, J. R., & de By, R. A. (2019). Delineation of agricultural fields in smallholder farms from satellite images using fully convolutional networks and combinatorial grouping. Remote Sensing of Environment, 231, 111253.

    Google Scholar 

  • Phan, H., Le Toan, T., Bouvet, A., Nguyen, L. D., Pham Duy, T., & Zribi, M. (2018). Mapping of rice varieties and sowing date using X-band SAR data. Sensors, 18(1), 316.

    Google Scholar 

  • Pingali, P. L. (1989). Institutional and environmental constraints to agricultural intensification. Population and Development Review, 15, 243–260.

    Google Scholar 

  • Prasad, V. K., & Badarinath, K. V. S. (2006). Soil surface nitrogen losses from agriculture in India: A regional inventory within agroecological zones (2000–2001). The International Journal of Sustainable Development and World Ecology, 13(3), 173–182.

    Google Scholar 

  • Prasad, V. K., Stinner, B., Stinner, D., Cardina, J., Moore, R., Gupta, P. K., Tsuruta, H., Tanabe, K., Badarinath, K. V. S., & Hoy, C. (2003). Trends in food production and nitrous oxide emissions from the agriculture sector in India: Environmental implications. Regional Environmental Change, 3(4), 154–161.

    Google Scholar 

  • Prasad, V. K., Badarinath, K. V. S., Yonemura, S., & Tsuruta, H. (2004). Regional inventory of soil surface nitrogen balances in Indian agriculture (2000–2001). Journal of Environmental Management, 73(3), 209–218.

    Google Scholar 

  • Prasad, T., Lyon, J. G., Turral, H., & Biradar, C. (Eds.). (2009). Remote sensing of global croplands for food security. CRC Press.

    Google Scholar 

  • Regmi, A., & Meade, B. (2013). Demand side drivers of global food security. Global Food Security, 2(3), 166–171.

    Google Scholar 

  • Ricciardi, V., Ramankutty, N., Mehrabi, Z., Jarvis, L., & Chookolingo, B. (2018). How much of the world's food do smallholders produce? Global Food Security, 17, 64–72.

    Google Scholar 

  • Richardson, C. W. (1985). Weather simulation for crop management models. Transactions of the ASAE, 28(5), 1602–1606.

    Google Scholar 

  • Sahajpal, R., Becker-Reshef, I., & Coutu, S. (2020). Optimizing crop cut collection for determining field-scale yields in an insurance context. https://eartharxiv.org/repository/view/1766/

  • Sharma, V. P., De, S., & Jain, D. (2019). Managing agricultural commercialisation for inclusive growth in South Asia. Gates Open Research, 3(507), 507.

    Google Scholar 

  • Singh, R. K., Kumar, P., Mukherjee, S., Suman, S., Pandey, V., & Srivastava, P. K. (2021). Application of geospatial technology in agricultural water management. In Agricultural water management (pp. 31–45). Academic.

    Google Scholar 

  • Soille, P. (2000). Morphological image analysis applied to crop field mapping. Image and Vision Computing, 18(13), 1025–1032.

    Google Scholar 

  • Thakur, D., Kumar, Y., Kumar, A., & Singh, P. K. (2019). Applicability of wireless sensor networks in precision agriculture: A review. Wireless Personal Communications, 107(1), 471–512.

    Google Scholar 

  • Tso, B., & Mather, P. M. (1999). Crop discrimination using multi-temporal SAR imagery. International Journal of Remote Sensing, 20(12), 2443–2460.

    Google Scholar 

  • Turk, F. J., & Miller, S. D. (2005). Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques. IEEE Transactions on Geoscience and Remote Sensing, 43(5), 1059–1069.

    Google Scholar 

  • Vadrevu, K. P., & Badarinath, K. V. S. (2014). Agriculture and the nitrogen problem in India: Environmental implications. In Nitrogen deposition, critical loads and biodiversity (pp. 439–445). Springer.

    Google Scholar 

  • Vadrevu, K., & Lasko, K. (2015). Fire regimes and potential bioenergy loss from agricultural lands in the Indo-Gangetic plains. Journal of Environmental Management, 148, 10–20.

    Google Scholar 

  • Vadrevu, K., & Lasko, K. (2018). Intercomparison of MODIS AQUA and VIIRS I-band fires and emissions in an agricultural landscape—Implications for air pollution research. Remote Sensing, 10(7), 978.

    Google Scholar 

  • Vadrevu, K. P., Cardina, J., Hitzhusen, F., Bayoh, I., Moore, R., Parker, J., Stinner, B., Stinner, D., & Hoy, C. (2008). Case study of an integrated framework for quantifying agroecosystem health. Ecosystems, 11(2), 283–306.

    Google Scholar 

  • Vadrevu, K. P., Ellicott, E., Badarinath, K. V. S., & Vermote, E. (2011). MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, North India. Environmental Pollution, 159(6), 1560–1569.

    Google Scholar 

  • Vadrevu, K. P., Giglio, L., & Justice, C. (2013). Satellite based analysis of fire–carbon monoxide relationships from forest and agricultural residue burning (2003–2011). Atmospheric Environment, 64, 179–191.

    Google Scholar 

  • Vadrevu, K. P., Ohara, T., & Justice, C. (2014a). Air pollution in Asia. Environmental Pollution, 12, 233–235.

    Google Scholar 

  • Vadrevu, K. P., Lasko, K., Giglio, L. & Justice, C. (2014b). Analysis of Southeast Asian pollution episode during June 2013 using satellite remote sensing datasets. Environmental pollution, 12, 245–256.

    Google Scholar 

  • Vadrevu, K., Ohara, T., & Justice, C. (2017). Land cover, land use changes and air pollution in Asia: A synthesis. Environmental Research Letters, 12(12), 120201.

    Google Scholar 

  • Vadrevu, K. P., Ohara, T., & Justice, C. (Eds.). (2018). Land-atmospheric research applications in South and Southeast Asia. Springer.

    Google Scholar 

  • Vadrevu, K., Heinimann, A., Gutman, G., & Justice, C. (2019a). Remote sensing of land use/cover changes in South and Southeast Asian countries. International Journal of Digital Earth, 12(10), 1099–1102.

    Google Scholar 

  • Vadrevu, K. P., Dadhwal, V. K., Gutman, G., & Justice, C. (2019b). Remote sensing of agriculture–South/Southeast Asia research initiative special issue. International Journal of Remote Sensing, 40(21), 8071–8075.

    Google Scholar 

  • Vadrevu, K. P., Lasko, K., Giglio, L., Schroeder, W., Biswas, S., & Justice, C. (2019c). Trends in vegetation fires in south and southeast Asian countries. Scientific Reports, 9(1), 7422. https://doi.org/10.1038/s41598-019-43940-x

    Article  Google Scholar 

  • van Ittersum, M. K., Leffelaar, P. A., van Keulen, H., Kropff, M. J., Bastiaans, L., & Goudriaan, J. (2003). On approaches and applications of the Wageningen crop models. European Journal of Agronomy, 18(3–4), 201–234.

    Google Scholar 

  • Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J. F., & Ceschia, E. (2017). Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sensing of Environment, 199, 415–426.

    Google Scholar 

  • Venkatappa, M., Sasaki, N., Han, P., & Abe, I. (2021). Impacts of droughts and floods on croplands and crop production in Southeast Asia – An application of Google Earth Engine. Science of the Total Environment, 795, 148829.

    Google Scholar 

  • Wang, S., Di Tommaso, S., Faulkner, J., Friedel, T., Kennepohl, A., Strey, R., & Lobell, D. B. (2020). Mapping crop types in Southeast India with smartphone crowdsourcing and deep learning. Remote Sensing, 12(18), 2957.

    Google Scholar 

  • Whitcraft, A. K., Becker-Reshef, I., & Justice, C. O. (2015). A framework for defining spatially explicit earth observation requirements for a global agricultural monitoring initiative (GEOGLAM). Remote Sensing, 7(2), 1461–1481.

    Google Scholar 

  • Williams, J. R., & Renard, K. G. (1985). Assessments of soil erosion and crop productivity with process models (EPIC). In Soil erosion and crop productivity (pp. 67–103). ASA.

    Google Scholar 

  • Xiao, X., Boles, S., Frolking, S., Li, C., Babu, J. Y., Salas, W., & Moore, B., III. (2006). Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sensing of Environment, 100(1), 95–113.

    Google Scholar 

  • Yan, L., & Roy, D. P. (2016). Conterminous United States crop field size quantification from multi-temporal Landsat data. Remote Sensing of Environment, 172, 67–86.

    Google Scholar 

  • Zhao, H., Duan, S., Liu, J., Sun, L., & Reymondin, L. (2021). Evaluation of five deep learning models for crop type mapping using sentinel-2 time series images with missing information. Remote Sensing, 13(14), 2790.

    Google Scholar 

Download references

Acknowledgments

We are grateful to several local, regional and international scientists who shared their valuable inputs through participating in several SARI meetings and workshops. The first author gratefully acknowledges the financial support received from the NASA Land Cover/Land Use Change Program for the South/Southeast Asia Research Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Prasad Vadrevu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vadrevu, K.P., Le Toan, T., Ray, S.S., Justice, C. (2022). Agricultural Information Needs and Research Priorities for Remote Sensing in South and Southeast Asian Countries. In: Vadrevu, K.P., Le Toan, T., Ray, S.S., Justice, C. (eds) Remote Sensing of Agriculture and Land Cover/Land Use Changes in South and Southeast Asian Countries. Springer, Cham. https://doi.org/10.1007/978-3-030-92365-5_1

Download citation

Publish with us

Policies and ethics