Skip to main content

Singular elastic solutions in corners with spring boundary conditions under anti-plane shear

Abstract

A new analytical procedure is developed for the deduction of the asymptotic series of the singular solutions in displacements and stresses near the vertex of the linear elastic isotropic corners with the Dirichlet–Robin (fixed-spring) and Neumann–Robin (free-spring) boundary conditions. Under the assumption of antiplane shear loading, the corresponding elastic problem reduces to the Laplace equation for the out-of-plane displacement. In the deduction of such singular solution, the complex variable is used to propose a harmonic function in the form of an asymptotic series including both power and logarithmic terms. This original procedure is suitable for its implementation in a computer algebra software which makes all the necessary symbolic computing, simplifications and rearrangements. This is a key issue due to the fact that the complexity of terms in these series may increase with increasing order of terms. These series are composed by the main terms (also called main singularities), solutions of the corresponding Dirichlet–Neumann or Neumann–Neumann problems, and the associated finite or infinite series of the so-called shadow terms (also called shadow singularities). These terms are determined by solving systems of recursive inhomogeneous Dirichlet–Neumann or Neumann–Neumann problems, respectively. A general classification of the behaviours of the asymptotic series covering all the considered corner problems is introduced. A few examples of the asymptotic series for corners with Dirichlet–Robin and Neumann–Robin boundary conditions are presented to illustrate the capabilities of this procedure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Notes

  1. 1.

    The following subsets of real numbers will be used in this work: \({\mathbb {Z}}\) the set of integer numbers, \({\mathbb {N}}\) the set of natural numbers, \({\mathbb {Q}}\) the set of rational numbers, and \({\mathbb {N}}_{0}={\mathbb {N}}\cup \{0\}\) the set of non-negative integers.

  2. 2.

    The authors thank to Professor Serge Nicaise (Université Polytechnique Hauts-de-France, Valenciennes) for calling their attention to this non-uniqueness issue.

References

  1. Antipov YA, Avila-Pozos O, Kolaczkowski ST, Movchan AB (2001) Mathematical model of delamination cracks on imperfect interfaces. Int J Solids Struct 38(36–37):6665–6697

    Google Scholar 

  2. Barber JR (2010) Elasticity. Springer, Dordrecht

    Google Scholar 

  3. Barroso A, Mantič V, París F (2003) Singularity analysis of anisotropic multimaterial corners. Int J Fract 119(1):1–23

    Google Scholar 

  4. Benveniste Y, Miloh T (2001) Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech Mater 33:309–323

    Google Scholar 

  5. Cornetti P, Corrado M, Lorenzis LD, Carpinteri A (2015) An analytical cohesive crack modeling approach to the edge debonding failure of FRP-plated beams. Int J Solids Struct 53:92–106

    Google Scholar 

  6. Costabel M, Dauge M (1993) Construction of corner singularities for Agmon–Douglis–Nirenberg elliptic systems. Mathematische Nachrichten 162(1):209–237

    Google Scholar 

  7. Costabel M, Dauge M (1996) A singularly perturbed mixed boundary value problem. Commun Partial Differ Equ 21(11–12):1919–1949

    Google Scholar 

  8. Costabel M, Dauge M (2002) Crack singularities for general elliptic systems. Mathematische Nachrichten 235(1):29–49

    Google Scholar 

  9. Costabel M, Dauge M, Yosibash Z (2004) A quasi-dual function method for extracting edge stress intensity functions. SIAM J Math Anal 35(5):1177–1202

    Google Scholar 

  10. Dempsey JP, Sinclair GB (1979) On the stress singularities in the plane elasticity of the composite wedge. J Elast 9(4):373–391

    Google Scholar 

  11. Dillard DA, Mukherjee B, Karnal P, Batra RC, Frechette J (2018) A review of Winkler’s foundation and its profound influence on adhesion and soft matter applications. Soft Matter 14:3669–3683

    CAS  Google Scholar 

  12. Erdogan F (1997) Fracture mechanics of interfaces. In: Rossmanith HP (ed) Damage and failure of interfaces. Balkema Publishers, Rotterdam, pp 3–36

    Google Scholar 

  13. Geymonat G, Krasucki F, Lenci S (1999) Mathematical analysis of a bonded joint with a soft thin adhesive. Math Mech Solids 4:201–225

    Google Scholar 

  14. Goland M, Reissner E (1944) The stresses in cemented joints. J Appl Mech 11:A17–A27

    Google Scholar 

  15. Grisvard P (1985) Elliptic problems in nonsmooth domains. Pitman, Boston

    Google Scholar 

  16. Grisvard P (1992) Singularities in boundary value problems. Springer, London

    Google Scholar 

  17. Hashin Z (2002) Thin interphase/imperfect interface in elasticity with application to coated fiber composites. J Mech Phys Solids 50:2509–2537

    Google Scholar 

  18. Hwu C, Omiya M, Kishimoto K (2003) A key matrix N for the stress singularity of the anisotropic elastic composite wedges. JSME Int J Ser A 46:40–50

    Google Scholar 

  19. Kashiwabara T, Colciago C, Dedè L, Quarteroni A (2015) Well-posedness, regularity, and convergence analysis of the finite element approximation of a generalized Robin boundary value problem. SIAM J Numer Anal 53(1):105–126

    Google Scholar 

  20. Kondratiev VA (1967) Boundary-value problems for elliptic equations in domains with conical or angular points. Trans Moscow Math Soc 16:227–313

    Google Scholar 

  21. Leguillon D, Sanchez-Palencia E (1987) Computation of singular solutions in elliptic problems and elasticity. Masson, Paris

    Google Scholar 

  22. Lenci S (2001) Analysis of a crack at a weak interface. Int J Fract 108:275–290

    Google Scholar 

  23. Mantič V, París F, Berger J (2003) Singularities in 2D anisotropic potential problems in multi-material corners. Real variable approach. Int J Solids Struct 40:5197–5218

    Google Scholar 

  24. Mantič V, Barroso A, París F (2014) Singular elastic solutions in anisotropic multimaterial corners. Applications to composites. In: Mantič V (ed) Mathematical methods and models in composites. Imperial College Press, London, pp 425–495

    Google Scholar 

  25. Mantič V, Távara L, Blázquez A, Graciani E, París F (2015) A linear elastic-brittle interface model: application for the onset and propagation of a fibre-matrix interface crack under biaxial transverse loads. Int J Fract 195:15–38

    Google Scholar 

  26. Mazya V, Rossmann J (1992) On a problem of Babuška (Stable asymptotics of the solution to the Dirichlet problem for elliptic equations of second order in domains with angular points). Mathematische Nachrichten 155(1):199–220

    Google Scholar 

  27. Medková D (2018) The Laplace equation boundary value problems on bounded and unbounded Lipschitz domains. Springer, Cham

    Google Scholar 

  28. Mghazli Z (1992) Regularity of an elliptic problem with mixed Dirichlet-Robin boundary conditions in a polygonal domain. Calcolo 29(3–4):241–267

    Google Scholar 

  29. Mishuris G (2001) Interface crack and nonideal interface concept (Mode III). Int J Fract 107:279–296

    Google Scholar 

  30. Mishuris GS, Kuhn G (2001) Asymptotic behaviour of the elastic solution near the tip of a crack situated at a nonideal interface. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik 81(12):811–826

    Google Scholar 

  31. Nicaise S, Li H, Mazzucato A (2017) Regularity and a priori error analysis of a Ventcel problem in polyhedral domains. Math Methods Appl Sci 40(5):1625–1636

    Google Scholar 

  32. Omer N, Yosibash Z, Costabel M, Dauge M (2004) Edge flux intensity functions in polyhedral domains and their extraction by a quasidual function method. Int J Fract 129(2):97–130

    Google Scholar 

  33. Paggi M, Carpinteri A (2008) On the stress singularities at multimaterial interfaces and related analogies with fluid dynamics and diffusion. Appl Mech Rev 61:020801-1–22

    Google Scholar 

  34. Prandtl L (1933) Ein Gedankenmodell für den Zerreißvorgang spröder Körper (A thought model for the fracture of brittle solids). Zeitschrift für Physik Angenwandte Mathematik und Mechanik 13(2):129–133, Translation: Knauss W. G. Int J Fract (2011) 171:105–109

  35. Sinclair GB (1996) On the influence of cohesive stress-separation laws on elastic stress singularities. J Elast 44:203–221

    Google Scholar 

  36. Sinclair GB (1999) A note on the removal of further breakdowns in classical solutions of Laplace’s equation on sectorial regions. J Elast 56:247–252

    Google Scholar 

  37. Sinclair GB (2004) Stress singularities in classical elasticity–I: Removal, interpretation and analysis, –II: Asymptotic identification. Appl Mech Rev 57(4):251–297, 385–439

  38. Sinclair GB (2009) A note on the influence of cohesive stress-separation laws on elastic stress singularities in antiplane shear. J Elast 94:87–93

    Google Scholar 

  39. Sinclair GB (2015) On the influence of adhesive stress-separation laws on elastic stress singularities. J Elast 118:187–206

    Google Scholar 

  40. Steigemann M (2015) Power-law solutions of anisotropic multi-material elasticity problems. J Elast 118:63–87

    Google Scholar 

  41. Ting TCT (1997) Stress singularities at the tip of interfaces in polycrystals. In: Rossmanith HP (ed) Damage and failure of interfaces. Balkema Publishers, Rotterdam, pp 75–82

    Google Scholar 

  42. Valoroso N, Champaney L (2006) A damage-mechanics-based approach for modelling decohesion in adhesively bonded assemblies. Eng Fract Mech 73:2774–2801

    Google Scholar 

  43. Vasilopoulos D (1988) On the determination of higher order terms of singular elastic stress fields near corners. Numer Math 53(1–2):51–95

    Google Scholar 

  44. Volkersen O (1938) Die Nietkraftverteilung in Zugbeanspruchten Nietverbindungen mit Konstanten Laschen-querschnitten. Luftfahrtforschung 15:41–47

    Google Scholar 

  45. Wang CH, Rose LRF (1999) A crack bridging model for bonded plates subjected to tension and bending. Int J Solids Struct 36:1985–2014

    Google Scholar 

  46. Wieghardt K (1907) Über das Spalten und Zerreissen elastischer Körper (On splitting and cracking of elastic bodies). Zeitschrift für Mathematik und Physik 55(1-2):60–103, Translation: Rossmanith H.P. Fatigue Fract Eng Mater Struct (1995) 12:1371–1405

  47. Williams ML (1952) Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J Appl Mech 19:526–528

    Google Scholar 

  48. Winkler E (1867) Die Lehre von der Elasticität und Festigkeit mit besondere Rücksicht auf ihre Anwendung in der Technik, für polytechnische Schulen, Bauakademien, Ingenieure, Maschienenbauer, Architecten, etc. Verlag von H, Dominicus, Prag

  49. Wolfram S (1991) Mathematica. A system for doing mathematics by computer. Addison-Wesley, Redwood City

    Google Scholar 

  50. Yin WL (2003) Anisotropic elasticity and multi-material singularities. J Elast 71:263–292

    Google Scholar 

  51. Yosibash Z (2012) Singularities in elliptic boundary value problems and elasticity and their connection with failure. Springer, New York

    Google Scholar 

Download references

Acknowledgements

The authors thank to Professor Serge Nicaise (Université Polytechnique Hauts-de-France, Valenciennes) for calling their attention to the issue of non-uniqueness of shadow terms. The research was conducted with the support of the Spanish Ministry of Science, Innovation and Universities and European Regional Development Fund (Project PGC2018-099197-B-I00), and the Junta de Andalucía and European Regional Development Fund (Projects US-1266016 and P18-FR-1928).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vladislav Mantič.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Alfaro, S., Villalba, V. & Mantič, V. Singular elastic solutions in corners with spring boundary conditions under anti-plane shear. Int J Fract 223, 197–220 (2020). https://doi.org/10.1007/s10704-020-00443-5

Download citation

Keywords

  • Adhesive joint
  • Corner singularity
  • Asymptotic series expansion
  • Shadow term
  • Logarithmic singularity
  • Laplace equation
  • Robin boundary condition
  • Antiplane strain
  • Thermal boundary resistance