Skip to main content
Log in

Influence of grain boundary misorientation on intergranular fracture of nanocrystalline palladium

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Atomistic simulations of tensile straining of three-dimensional nanocrystalline palladium samples at room temperature and at a constant strain rate of \(10^{8}\,\hbox {s}^{-1}\) were performed. Potential understating surface energies and therefore facilitating intergranular fracture was applied for modeling of interatomic interactions. Palladium samples subjected to uniaxial straining have demonstrated initiation of intergranular cracks which have occurred preferably at the high-angle grain boundaries oriented perpendicular to the direction of applied strain and independently of their tilt/twist character. Further propagation of cracks took place along the adjacent grain boundaries. No cases of intergranular fracture at low-angle grain boundaries, of both the general and special character, were found. Intergranular fracture was observed only in an insignificant number of special high-angle grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abadi R, Uma RP, Izadifar M, Rabczuk T (2016) The effect of temperature and topological defects on fracture strength of grain boundaries in single-layer polycrystalline boron-nitride nanosheet. Comput Mater Sci 123:277–286

    Article  CAS  Google Scholar 

  • Alexandreanu B, Capell B, Was GS (2001) Combined effect of special grain boundaries and grain boundary carbides on IGSCC of Ni–16Cr–9Fe–xC alloys. Mat Sci Eng A Struct 300:94–104

    Article  Google Scholar 

  • Arafin MA, Szpunar JA (2009) A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies. Corros Sci 51:119–128

    Article  CAS  Google Scholar 

  • Bachurin DV (2018a) Influence of internal stresses on deformation behavior of nanocrystalline palladium. Mat Sci Eng A Struct 734:255–259

    Article  CAS  Google Scholar 

  • Bachurin DV (2018b) Influence of voids distribution on the deformation behavior of nanocrystalline palladium. Solid State Commun 275:43–47

    Article  CAS  Google Scholar 

  • Bachurin DV, Gumbsch P (2010) Accommodation processes during deformation of nanocrystalline palladium. Acta Mater 58:5491–5501

    Article  CAS  Google Scholar 

  • Bachurin DV, Gumbsch P (2012) Elastic and plastic anisotropy after straining of nanocrystalline palladium. Phys Rev B 85:085407

    Article  Google Scholar 

  • Bachurin DV, Gumbsch P (2014) Atomistic simulation of the deformation of nanocrystalline palladium: the effect of voids. Model Simul Mater Sc 22:025011

    Article  Google Scholar 

  • Bond DM, Zikry MA (2018) Differentiating between intergranular and transgranular fracture in polycrystalline aggregates. J Mater Sci 53:5786–5798

    Article  CAS  Google Scholar 

  • Brandon DG (1966) Structure of high-angle grain boundaries. Acta Metall Mater 14:1479

    Article  CAS  Google Scholar 

  • Coffman VR, Sethna JP (2008) Grain boundary energies and cohesive strength as a function of geometry. Phys Rev B 77

  • Farkas D, Nogueira R, Ruda M, Hyde B (2005a) Atomistic simulations of the effects of segregated elements on grain-boundary fracture in body-centered-cubic Fe. Metall Mater Trans A 36A:2067–2072

    Article  CAS  Google Scholar 

  • Farkas D, Van Petegem S, Derlet PM, Van Swygenhoven H (2005b) Dislocation activity and nano-void formation near crack tips in nanocrystalline Ni. Acta Mater 53:3115–3123

    Article  CAS  Google Scholar 

  • Fensin SJ, Valone SM, Cerreta EK, Gray GT (2012) Influence of grain boundary properties on spall strength: grain boundary energy and excess volume. J Appl Phys 112:083529

    Article  Google Scholar 

  • Field DP, Adams BL (1992) Interface cavitation damage in polycrystalline copper. Acta Metall Mater 40:1145–1157

    Article  CAS  Google Scholar 

  • Geraci G, Aliabadi MH (2017) Micromechanical boundary element modelling of transgranular and intergranular cohesive cracking in polycrystalline materials. Eng Fract Mech 176:351–374

    Article  Google Scholar 

  • Gertsman VY, Bruemmer SM (2001) Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys. Acta Mater 49:1589–1598

    Article  CAS  Google Scholar 

  • http://imd.itap.physik.uni-stuttgart.de/

  • Ikeda K, Morita K, Nakashima H, Abe H (1999) Misorientation dependence of grain boundary fracture strength and grain boundary energy for molybdenum \(<001>\) symmetric tilt boundaries. J Jpn I Met 63:179–186

    Article  CAS  Google Scholar 

  • Kedharnath A, Panwar AS, Kapoor R (2017) Molecular dynamics simulation of the interaction of a nano-scale crack with grain boundaries in alpha-Fe. Comput Mater Sci 137:85–99

    Article  CAS  Google Scholar 

  • Kim T, Hong KT, Lee KS (2003) The relationship between the fracture toughness and grain boundary character distribution in polycrystalline NiAl. Intermetallics 11:33–39

    Article  CAS  Google Scholar 

  • Kobayashi S, Tsurekawa S, Watanabe T (2016) A new approach to grain boundary engineering for nanocrystalline materials. Beilstein J Nanotech 7:1829–1849

    Article  CAS  Google Scholar 

  • Kraft RH, Molinari JF (2008) A statistical investigation of the effects of grain boundary properties on transgranular fracture. Acta Mater 56:4739–4749

    Article  CAS  Google Scholar 

  • Kurishita H, Kuba S, Kubo H, Yoshinaga H (1985a) Misorientation dependence of grain-boundary fracture in molybdenum bicrystals with various (110) twist boundaries. T Jpn I Met 26:332–340

    Article  Google Scholar 

  • Kurishita H, Oishi A, Kubo H, Yoshinaga H (1985b) Grain-boundary fracture in molybdenum bicrystals with various (110) symmetric tilt boundaries. T Jpn I Met 26:341–352

    Article  Google Scholar 

  • Lehockey EM, Palumbo G (1997) On the creep behaviour of grain boundary engineered nickel. Mat Sci Eng A Struct 237:168–172

    Article  Google Scholar 

  • Li J (2003) AtomEye: an efficient atomistic configuration viewer. Model Simul Mater Sc 11:173–177

    Article  Google Scholar 

  • Lin H, Pope DP (1993) The influence of grain-boundary geometry on intergranular crack-propagation in Ni3Al. Acta Metall Mater 41:553–562

    Article  CAS  Google Scholar 

  • Lin H, Pope DP (1995) Weak grain-boundaries in Ni3Al. Mat Sci Eng A Struct 192:394–398

    Article  Google Scholar 

  • Lin LQ, Wang XQ, Zeng XW (2017) The role of cohesive zone properties on intergranular to transgranular fracture transition in polycrystalline solids. Int J Damage Mech 26:379–394

    Article  Google Scholar 

  • Nazarov AA, Mulyukov RR (2003) Handbook of nanoscience, engineering, and technology. CRC Press, Boca Raton

    Google Scholar 

  • Pan Y, Adams BL, Olson T, Panayotou N (1996) Grain-boundary structure effects on intergranular stress corrosion cracking of Alloy X-750. Acta Mater 44:4685–4695

    Article  CAS  Google Scholar 

  • Pioszak GL, Gangloff RP (2017) Hydrogen environment assisted cracking of modern ultra-high strength martensitic steels. Metall Mater Trans A 48A:4025–4045

    Article  Google Scholar 

  • Qian J, Li SF (2011) Application of multiscale cohesive zone model to simulate fracture in polycrystalline solids. J Eng Mater T Asme 133:011010

    Article  Google Scholar 

  • Qiu RZ, Li CC, Fang TH (2017) Mechanical properties and crack growth behavior of polycrystalline copper using molecular dynamics simulation. Phys Scr 92:085702

    Article  Google Scholar 

  • Rath BB, Bernstein IM (1971) Relation between grain-boundary orientation and intergranular cracking. Metall Trans 2:2845–2851

    Article  CAS  Google Scholar 

  • Scheiber D, Pippan R, Puschnig P, Romaner L (2016) Ab initio calculations of grain boundaries in bcc metals. Model Simul Mater Sc 24:035013

    Article  Google Scholar 

  • Schiotz J, Vegge T, Di Tolla FD, Jacobsen KW (1999) Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys Rev B 60:11971–11983

    Article  CAS  Google Scholar 

  • Shenderova OA, Brenner DW, Omeltchenko A, Su X, Yang LH (2000) Atomistic modeling of the fracture of polycrystalline diamond. Phys Rev B 61:3877–3888

    Article  CAS  Google Scholar 

  • Shenderova OA, Brenner DW, Omeltchenko A, Su X, Yang LH, Nazarov AA (1999) Multiscale modeling of polycrystalline diamond. In: Proceedings of the second international conference on the modeling and simulation of microsystems, actuators and sensors, pp. 61–64

  • Somekawa H, Singh A, Inoue T, Mukai T (2010) Enhancing fracture toughness of magnesium alloy by formation of low-angle grain boundary structure. Adv Eng Mater 12:837–842

    Article  CAS  Google Scholar 

  • Spearot DE, Tschopp MA, Jacob KI, McDowell DL (2007) Tensile strength of \(<100>\) and \(<110>\) tilt bicrystal copper interfaces. Acta Mater 55:705–714

    Article  CAS  Google Scholar 

  • Su JQ, Demura M, Hirano T (2002) Grain-boundary fracture strength in Ni3Al bicrystals. Philos Mag A 82:1541–1557

    CAS  Google Scholar 

  • Sukumar N, Srolovitz DJ, Baker TJ, Prevost JH (2003) Brittle fracture in polycrystalline microstructures with the extended finite element method. Int J Numer Math Eng 56:2015–2037

    Article  Google Scholar 

  • Tanaka T, Tsurekawa S, Nakashima H, Yoshinaga H (1994) Misorientation dependence of fracture-stress and grain-boundary energy in molybdenum with [110] symmetrical tilt-boundaries. J Jpn I Met 58:382–389

    Article  CAS  Google Scholar 

  • Tsurekawa S, Kokubun S, Watanabe T (1999) Effect of grain boundary microstructures of brittle fracture in polycrystalline molybdenum. Towar Innov Superplast II 304–3:687–692

    Google Scholar 

  • Tsurekawa S, Tanaka T, Yoshinaga H (1994) Grain-boundary structure, energy and strength in molybdenum. Mat Sci Eng A Struct 176:341–348

    Article  CAS  Google Scholar 

  • Valiev RZ, Zhilyaev AP, Langdon TG (2013) Bulk nanostructured materials: fundamentals and applications. Wiley, Hoboken

    Book  Google Scholar 

  • Van Petegem S, Dalla Torre F, Segers D, Van Swygenhoven H (2003) Free volume in nanostructured Ni. Scr Mater 48:17–22

    Article  Google Scholar 

  • Vehoff H, Nykyforchyn A (2003) Fatigue crack nucleation at grain boundaries—experiment and simulation. Z Metallkd 94:682–686

    Article  CAS  Google Scholar 

  • Vehoff H, Ochmann P, Goken M, Gehling MG (1997) Deformation processes at crack tips in NiAl single- and bicrystals. Mat Sci Eng A Struct 240:378–385

    Article  Google Scholar 

  • von Sydow B, Hartford J, Wahnstrom G (1999) Atomistic simulations and Peierls–Nabarro analysis of the Shockley partial dislocations in palladium. Comput Mater Sci 15:367–379

    Article  Google Scholar 

  • Watanabe T (1984) An approach to grain-boundary design for strong and ductile polycrystals. Res Mech 11:47–84

    CAS  Google Scholar 

  • Zhang WJ, Song XY, Hui SX, Ye WJ (2017) In-situ SEM observations of fracture behavior of BT25y alloy during tensile process at different temperature. Mater Des 116:638–643

    Article  CAS  Google Scholar 

  • Zhou Y, Erb U, Aust KT, Palumbo G (2003) The effects of triple junctions and grain boundaries on hardness and Young’s modulus in nanostructured Ni-P. Scr Mater 48:825–830

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Deutsche Forschungsgemeinschaft (FOR714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Bachurin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachurin, D.V. Influence of grain boundary misorientation on intergranular fracture of nanocrystalline palladium. Int J Fract 214, 69–78 (2018). https://doi.org/10.1007/s10704-018-0319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-018-0319-2

Keywords

Navigation