Skip to main content
Log in

A two-dimensional augmented finite element for dynamic crack initiation and propagation

  • Compmech
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this study, an implicit formulation of a 2D finite element based on a recently developed augmented finite element method is proposed for stable and efficient simulation of dynamic fracture in elastic solids. The 2D A-FE ensures smooth transition from a continuous state to a discontinuous state with an arbitrary intra-element cohesive crack, without the need of additional degree of freedoms (DoFs). Internal nodal DoFs are introduced for sub-domain integration and cohesive stress integration and they are then condensed at elemental level by a consistency-check based algorithm. The numerical performance of the proposed A-FE has been assessed through simulations of several benchmark dynamic fracture problems and in all cases the numerical results are in good agreement with the respective experimental results and other simulation results in literature. It has further been demonstrated that, (i) the dynamic A-FE is rather insensitive to mesh sizes and mesh structures; (ii) with similar solution accuracy it allows for the use of time steps 1–2 orders of magnitude larger than those used in other similar studies; and (iii) the implicit nature of the proposed A-FE allows for the use of a Courant number as large as 3.0–3.5 while maintaining solution stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The initiation criterion is material dependent. For homogenous isotropic materials a widely used criterion is the maximum principal stress criterion, i.e., a crack with direction perpendicular to the maximum principal stress direction initiates when the maximum principal stress in the element meets a prescribed cohesive strength value.

  2. For various integration and interpolation schemes, the reader is referred to Do (2013).

References

  • Akin JE (1982) Application and implementation of finite element methods. Academic Press, London

    Google Scholar 

  • Anderson TL (2005) Fracture mechanics fundamentals and applications. CRC Press, Boca Raton

    Google Scholar 

  • Asadpoure A, Mohammadi S, Vafai A (2006) Modeling crack in orthotropic media using a coupled finite element and partition of unity method. Finite Elem Anal Des 42:1165–1175

    Article  Google Scholar 

  • Bazant Z, Pijaudier-Cabot G (1988) Nonlocal continuum damage, localization instability and convergence. J Appl Mech 55(2):287–293

    Article  Google Scholar 

  • Belytschko T, Organ D, Gerlach C (2000) Element-free galerkin methods for dynamic fracture in concrete. Comput Methods Appl Mech Eng 187(3–4):385–399

    Article  Google Scholar 

  • Belytschko T et al (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58(12):1873–1905

    Article  Google Scholar 

  • Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(20–22):2899–2938

    Article  Google Scholar 

  • Cervera M, Chiumenti M, Codina R (2010) Mixed stabilized finite element methods in nonlinear solid mechanics PartII: strain localization. Comput Methods Appl Mech Eng 199:2571–2589

    Article  Google Scholar 

  • Combescure A et al (2012) Cohesive laws X-FEM association for simulation of damage fracture transition and tensile shear switch in dynamic crack propagation. Procedia IUTAM 3:274–291

    Article  Google Scholar 

  • Constanzo F, Walton JR (1998) Numerical simulations of a dynamically propagating crack with a nonlinear cohesive zone. Int J Fract 91:373–389

    Article  Google Scholar 

  • Cox BN et al (2014) Stochastic virtual tests for high-temperature ceramic matrix composites. Ann Rev Mater Res 44:17.1–17.51

    Article  Google Scholar 

  • Daux C et al (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Meth Eng 48:1741–1760

    Article  Google Scholar 

  • De Borst R et al (2012) Nonlinear finite element analysis of solids and structures, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • Do BC et al (2013) Improved cohesive stress integration schemes for cohesive zone elements. Eng Fract Mech 107:14–28

    Article  Google Scholar 

  • Duan Q et al (2009) Element-local level set method for threedimensional dynamic crack growth. Int J Numer Meth Eng 80:1520–1543

    Article  Google Scholar 

  • Duarte CA, Babuska I, Oden JT (2000) Generalized finite element methods for three-dimensional structural mechanics problems. Comput Struct 77(2):215–232

    Article  Google Scholar 

  • Falk ML, Needleman A, Rice JR (2001) A critical evaluation of cohesive zone models of dynamic fracture. J Phys IV 11:43–50

    Google Scholar 

  • Fan R, Fish J (2008) The rs-method for material failure simulations. Int J Numer Meth Eng 73(11):1607–1623

    Article  Google Scholar 

  • Guo ZK, Kobayashi AS, Hawkins NM (1995) Dynamic mixed mode fracture of concrete. Int J Solids Struct 32:2591–2607

    Article  Google Scholar 

  • Hattori G et al (2012) New anisotropic crack-tip enrichment functions for the extended finite element method. Comput Mech 50:591–601

    Article  Google Scholar 

  • Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5:283–292

    Article  Google Scholar 

  • Hughes TJR, Liu WK (1978a) Implicit-explicit finite elements in transient analysis: implementation and numerical examples. J Appl Mech 45:375–378

    Article  Google Scholar 

  • Hughes TJR, Liu WK (1978b) Implicit-explicit finite elements in transient analysis: stability theory. J Appl Mech 45:371–374

    Article  Google Scholar 

  • Hutchinson JW, Evans AG (2000) Mechanics of materials: top-down approaches to fracture. Acta Mater 48:125–135

    Article  Google Scholar 

  • Kosteski L, B DAR, Iturrioz I (2012) Crack propagation in elastic solids using the truss like discrete element method. Int J Fract 174:139–161

    Article  Google Scholar 

  • Ling DS, Yang QD, Cox BN (2009) An augmented finite element method for modeling arbitrary discontinuities in composite materials. Int J Fract 156:53–73

    Article  Google Scholar 

  • Liu ZL, Menouillard T, Belytschko T (2011) An XFEM/Spectral element method for dynamic crack propagation. Int J Fract 169:183–198

    Article  Google Scholar 

  • Liu W et al (2013) An accurate and efficient augmented finite element method for arbitrary crack interactions. J Appl Mech 80:041033-1–041033-12

    Google Scholar 

  • Liu W et al (2014a) An efficient augmented finite element method (A-FEM) for arbitrary cracking and crack interaction in solids. Int J Numer Meth Eng 99:438–468

  • Liu W et al (2014b) An accurate and efficient augmented finite element method for arbitrary crack interactions. J Appl Mech 80:041033-1–041033-12

  • Liu W et al (2015) A consistency-check based algorithm for element condensation in augmented finite element methods for fracture analysis. Eng Fract Mech 139:78–97

    Article  Google Scholar 

  • Lu W et al (2012) Cohesive zone method based simulations of ice wedge bending: a comparative study of element erosion, CEM, DEM and XFEM. In: 21st IAHR international symposium on ice. Dalian, China

  • Maeda N et al (1996) Fundamental study on applications of damage mechanics to evaluation of material degradation. Nucl Eng Des 167:69–76

    Article  Google Scholar 

  • Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1–4):289–314

    Article  Google Scholar 

  • Menouillard T et al (2010) Time dependent crack tip enrichment for dynamic crack propagation. Int J Fract 162:33–49

    Article  Google Scholar 

  • Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field. Int J Numer Method Eng 83(10):1273–1311

    Article  Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  Google Scholar 

  • Moës N et al (2011) A level set based model for damage growth: the thick level set approach. Int J Numer Method Eng 86(3):358–380

    Article  Google Scholar 

  • Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69:813–833

    Article  Google Scholar 

  • Mousavi SE, Grinspun E, Sukumar N (2011) Higher-order extended finite elements with harmonic enrichment functions for complex crack problems. Int J Numer Meth Eng 86:560–574

    Article  Google Scholar 

  • Ooi ET, Yang ZJ, Guo ZY (2012) Dynamic cohesive crack propagation modelling using the scaled boundary finite element method. Fatigue Fract Eng Mater Struct 35:786–800

    Article  Google Scholar 

  • Park KC (1975) An improved stiffly stable method for direct integration of nonlinear structural dynamic equations. J Appl Mech 42:464–470

    Article  Google Scholar 

  • Peerlings RHJ et al (1998) Gradient-enhanced damage modelling of concrete fracture. Mech Cohe Frict Mater 3(4):323–342

    Article  Google Scholar 

  • Rabczuk T, Zi G (2007) A meshfree method based on local partition of unity for cohesive cracks. Comput Mech 39:743–760

    Article  Google Scholar 

  • Remmers JJC, de Borst R, Needleman A (2008) The simulation of dynamic crack propagation using the cohesive segment method. J Mech Phys Solids 56:70–92

    Article  Google Scholar 

  • Richardson CL et al (2011) An XFEM method for modeling geometrically elaborate crack propagation in brittle material. Int J Numer Meth Eng 88:1042–1065

    Article  Google Scholar 

  • Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83:1526–1535

    Article  Google Scholar 

  • Song JH, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Meth Eng 67:868–893

    Article  Google Scholar 

  • Song JH, Wang HW, Belytschko T (2008) A comparative study on finite element methods for dynamic fracture. Comput Mech 42:239–250

    Article  Google Scholar 

  • Song JH, Belytschko T (2006) Dynamic fracture of shells subjected to impulsive loads. J Appl Mech 76:051301:1–051301:9

    Google Scholar 

  • Sridhar N, Yang QD, Cox BN (2003) Slip, stick and reverse slip characteristics during dynamic Fiber pullout. J Mech Phys Solids 51(7):1215–1241

    Article  Google Scholar 

  • Strouboulis T, Copps K, Babuska I (2000) The generalized finite element method: an example of its implementation and illustration of its performance. Int J Numer Meth Eng 47(8):1401–1417

    Article  Google Scholar 

  • Turon A et al (2007) An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models. Engin. Fract. Mech. 74:1665–1682

    Article  Google Scholar 

  • Unger JF, Eckardta S, Könke C (2007) Modelling of cohesive crack growth in concrete structures with the extended finite element method. Comput Methods Appl Mech Eng 196(41–44):4087–4100

    Article  Google Scholar 

  • Van de Meer FP, Sluys LJ (2009) A phantom node formulation with mixed mode cohesive law for splitting in laminates. Int J Fract 158:107–124

    Article  Google Scholar 

  • Wang YX, Waisman H (2015) Progressive delamination analysis of composite materials using XFEM and a discrete damage zone model. Comput Mech 55:1–26

    Article  Google Scholar 

  • Wang YX, Waisman H (2016) From diffuse damage to sharp cohesive cracks: a coupled XFEM framework for failure analysis of quasi-brittle materials. Comput Methods Appl Mech Eng 299:57–89

    Article  Google Scholar 

  • Xu D et al (2014) Modeling of dynamic crack branching by enhanced extended finite element method. Comput Mech 54:489–502

    Article  Google Scholar 

  • Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    Article  Google Scholar 

  • Yang QD et al (2010) An improved cohesive element for shell delamination analyses. Int J Numer Meth Eng 83(5):611–641

    Google Scholar 

  • Yang QD, Cox BN (2005) Cohesive models for damage evolution in laminated composites. Int J Fract 133(2):107–137

    Article  Google Scholar 

  • Yang QD, Thouless MD (2001) Mixed mode fracture of plastically-deforming adhesive joints. Int J Fract 110:175–187

    Article  Google Scholar 

  • Zamani A, Gracie R, M RE (2012) Cohesive and non-cohesive fracture by higher-order enrichment of XFEM. Int J Numer Meth Eng 90(4):452–483

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the support from the US Army Research Office (Grant No. W911NF-13-1-0211, PM: Dr. Asher Rubinstein) and the U.S. Air Force Office of Scientific Research (Contract No. FA8650-13-C-5212, PM: Dr. Craig Przybyla)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. D. Yang.

Additional information

Jaedal Jung and Q. D. Yang are contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, J., Yang, Q.D. A two-dimensional augmented finite element for dynamic crack initiation and propagation. Int J Fract 203, 41–61 (2017). https://doi.org/10.1007/s10704-016-0129-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0129-3

Keywords

Navigation