Skip to main content

Advertisement

Log in

Simulation and experimental investigation of the spall fracture of 304L stainless steel irradiated by a nanosecond relativistic high-current electron beam

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The results of numerical and experimental investigations of the shock-wave induced spall fracture of bulk samples with thickness up to 10 mm made of 304L stainless steel irradiated by a nanosecond relativistic high-current electron beam with duration of \({\sim }\)45 ns, electron energy of 1.35 MeV, and peak power density of \(\hbox {34 GW/cm}^{2}\) are presented. By a mathematical model developed for numerical simulation of the shock-wave dynamics, it was found that a quasi-planar shock wave with duration of \({\sim }0.2\,\upmu \hbox {s}\), and initial amplitude of 17 GPa was formed in the irradiated samples. The effects of orientation of \(\updelta \)-ferrite interlayers in the austenitic matrix relative to the shock wave direction on the spall fracture were experimentally investigated. It was found that spallation was carried out by mixed ductile–brittle fracture. For the transversal orientation of \(\updelta \)-ferrite, the contribution of a brittle fracture mode in the spallation is higher than that for the longitudinal orientation. In both cases, the spalled layer thickness increased almost linearly with the increase of the target thickness, which was in good agreement with literature data. By the comparison of experimental data with simulation results, it was revealed that the spall strength can be estimated as 6.1 GPa at strain rate \(0.48\,\upmu \hbox {s}^{-1}\) and 3.4 GPa at strain rate 0.18 \(\upmu \hbox {s}^{-1}\), for samples with the longitudinal and transversal orientation of \(\updelta \)-ferrites, respectively. The comparison of the obtained spall strength values with literature data is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antoun T, Seaman L, Curran DR, Kanel GI, Razorenov SV, Utkin AV (2003) Spall fracture. Springer Verlag, New York

    Google Scholar 

  • Baumung K, Bluhm HJ, Goel B, Hoppe P, Karow HU, Rusch D, Fortov VE, Kanel GI, Razorenov SV, Utkin AV, Vorobjev OYu (1996) Shock-wave physics experiments with high-power proton beams. Laser Part Beams 14:181–209. doi:10.1017/S0263034600009939

    Article  Google Scholar 

  • Baumung K, Bluhm H, Kanel GI, Muller G, Razorenov SV, Singer J, Utkin AV (2001) Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures. Int J Impact Eng 25:631–639. doi:10.1016/S0734-743X(01)00004-5

    Article  Google Scholar 

  • Borodin EN, Atroshenko SA, Mayer AE (2014) Distribution of dislocations and twins in copper and 18Cr-10Ni-Ti steel under shock-wave loading. Tech Phys 59:1163–1170. doi:10.1134/S1063784214080076

    Article  Google Scholar 

  • Borodin EN, Mayer AE (2015) Structural model of mechanical twinning and its application for modeling of the severe plastic deformation of copper rods in Taylor impact tests. Int J Plast 74:141–157. doi:10.1016/j.ijplas.2015.06.006

    Article  Google Scholar 

  • Brooks JA, Thompson AW (1991) Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. Int Mater Rev 36:16–44. doi:10.1179/imr.1991.36.1.16

    Article  Google Scholar 

  • Bushman AV, Lomonosov IV, Fortov VE (1993) Models of wide-range equation of state for matter under conditions of high energy density. Sov Tech Rev B 5:1–44

  • Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39:1–157. doi:10.1016/0079-6425(94)00007-7

    Article  Google Scholar 

  • Clements BE, Mas EM, Gray GT III (2002) Investigation of the observed anisotropic fracture in steels. In: Furnish MD, Thadhani NN, Horie Y (eds) Shock compression of condensed matter- 2001. American Institute of Physics, Melville, pp 535–538

    Google Scholar 

  • Chiou ST, Lee WS (2003) Plastic deformation and fracture response of 304 stainless steel subjected to dynamic shear loading. Mater Sci Tech 19:1266–1272. doi:10.1179/026708303225005854

    Article  Google Scholar 

  • Davis JR (ed) (1994) Stainless steels. ASM Specialty Handbook, ASM International

  • Dudarev EF, Markov AB, Bakach GP, Tabachenko AN, Polevin SD, Girsova NV, Kashin OA, Zhorovkov MF, Rotshtein VP (2009) Spall fracture of coarse- and ultrafine-grained FCC metals under nanosecond high-current relativistic beam irradiation. Rus Phys J 52:239–244. doi:10.1007/s11182-009-9226-3

    Article  Google Scholar 

  • Dudarev EF, Markov AB, Mayer AE, Bakach GP, Tabachenko AN, Kashin OA, Pochivalova GP, Skosyrskii AB, Kitsanov SA, Zhorovkov MF, Yakovlev EV (2013) Spall fracture patterns for the heterophase Cu–Al–Ni alloy in ultrafine- and coarse-grained states exposed to a nanosecond relativistic high-current electron beam. Rus Phys J 55:1451–1457. doi:10.1007/s11182-013-9979-6

    Article  Google Scholar 

  • Eliezer S, Gilath I, Bar-Noy T (1990) Laser-induced spall in metals: experiment and simulation. J Appl Phys 67:715–724. doi:10.1063/1.345777

    Article  Google Scholar 

  • Evdokimov OB, Yalovets AP (1974) Calculation of electron transport in a slab. Nucl Sci Eng 55:67–75 (http://www.ans.org/pubs/journals/nse/a_23967)

  • Fortov VE, Khishchenko KV, Levashov PR, Lomonosov IV (1998) Wide-range multi-phase equations of state for metals. Nucl Instrum Methods Phys Res Sect A 415:604–608. doi:10.1016/S0168-9002(98)00405-7

    Article  Google Scholar 

  • Garkushin GV, Razorenov SV, Kanel GI (2008) Effect of structural factors on submicrosecond strength of D16T aluminum alloy. Tech Phys 53:1441–1446. doi:10.1134/S1063784208110078

    Article  Google Scholar 

  • Golubev VK, Novikov SA, Sobolev JuS, Yukina NA (1985) Effect of the temperature and of the loading time on the strength and fracture of mild steel and steels St. 3 and 12Kh18N10T in spalling. Strength Mater 17:763–769. doi:10.1007/BF01528725

    Article  Google Scholar 

  • Gluzman VD, Kanel GI, Loskutov VF, Fortov VE, Khorev IE (1985) Resistance to deformation and fracture of 35Kh3NM steel under conditions of shock loading. Strength Mater 17:1093–1099. doi:10.1007/BF01533790

    Article  Google Scholar 

  • Gnyusov SF, Rotshtein VP, Polevin SD, Kitsanov SA (2011) Deformation behavior and spall fracture of the Hadfield steel under shock-wave loading. Rus Phys J 53:1046–1052. doi:10.1007/s11182-011-9529-z

    Article  Google Scholar 

  • Gray GT III, Bourne NK, Vecchio KS, Millett JCF (2010) Influence of anisotropy (crystallographic and microstructural) on spallation in Zr, Ta, HY-100 steel, and 1080 eutectoid steel. Int J Fract 163:243–258. doi:10.1007/s10704-009-9440-6

    Article  Google Scholar 

  • Johnson JN, Barker LM (1969) Dislocation dynamics and steady plastic wave profiles in 6061–T6 aluminum. J Appl Phys 40:4321. doi:10.1063/1.1657194

    Article  Google Scholar 

  • Kanel GI, Razorenov SV, Fortov VE (1984) Kinetics of spallation rupture in the aluminum alloy AMg6M. J Appl Mech Tech Phys 25:707–711. doi:10.1007/BF00909372

    Article  Google Scholar 

  • Kanel GI, Razorenov SV, Utkin AV, Baumung K (1996) Experimental profiles of shock waves, Preprint of Scientific Association IVTAN of RAS. Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow. http://www.ihed.ras.ru/rusbank/

  • Kanel GI, Asay JR, Baumung K, Bluhm H, Chhabildas LC, Fortov VE, Goel B, Hoppe P, Mehlhorn T, Razorenov SV, Rusch D, Utkin AV (1999) Applications of the ion beam technique for investigations of hypervelocity impacts. Int J Impact Eng 23:421–430. doi:10.1016/S0734-743X(99)00092-5

    Article  Google Scholar 

  • Kanel GI, Razorenov SV, Fortov VE (2004a) Shock-wave phenomena and the properties of condensed matter. Springer Verlag, New York

    Book  Google Scholar 

  • Kanel GI, Razorenov SV, Fortov VE (2004b) Shock-wave compression and tension of solids at elevated temperatures: Superheated crystal states, pre-melting, and anomalous growth of the yield strength. J Phys Condens Matter 16:S1007–S1016. doi:10.1088/0953-8984/16/14/010

    Article  Google Scholar 

  • Kanel GI, Fortov VE, Razorenov SV (2007) Shock waves in condensed-state physics. Phys-Usp 50:771–791. doi:10.1070/PU2007v050n08ABEH006327

    Article  Google Scholar 

  • Kanel GI, Razorenov SV, Utkin AV, Fortov VE (2008) Experimental Profiles of Shock Waves in Condensed Matters, FIZMATLIT, Moscow [in Russian]

  • Kanel GI (2010) Spall fracture: methodological aspects, mechanisms and governing factors. Int J Fract 163:173–191. doi:10.1007/s10704-009-9438-0

    Article  Google Scholar 

  • Kanel GI, Razorenov SV, Garkushin GV, Ashitkov SI, Komarov PS, Agranat MB (2014) Deformation resistance and fracture of iron over a wide strain rate range. Phys Solid State 56:1569–1573. doi:10.1134/S1063783414080113

    Article  Google Scholar 

  • Khishchenko KV (2008) Equations of state for two alkali metals at high temperatures. J Phys Conf Ser 98:032023. doi:10.1088/1742-6596/98/3/032023

    Article  Google Scholar 

  • Khishchenko KV, Mayer AE (2014) Non-isentropic layers in matter behind shock and ramp compression waves. arXiv:1407.8381v2 [physics.flu-dyn] (http://arxiv.org/abs/1407.8381v2)

  • Krasnikov VS, Mayer AE, Yalovets AP (2011) Dislocation based high-rate plasticity model and its application to plate-impact and ultra short electron irradiation simulations. Int J Plast 27:1294–1308. doi:10.1016/j.ijplas.2011.02.008

    Article  Google Scholar 

  • Levashov PR, Khishchenko KV (2007) Tabular multiphase equations of state for metals and their applications. AIP Conf Proc 955:59–62. doi:10.1063/1.2833161

  • Lu JZ, Zhong JS, Luo KY, Zhang L, Qi H, Luo M, Xu XJ, Zhou JZ (2013) Strain rate correspondence of fracture surface features and tensile properties in AISI 304 stainless steel under different LSP impact time. Surf Coat Tech 221:88–93. doi:10.1016/j.surfcoat.2013.01.031

    Article  Google Scholar 

  • Markov AB, Kitsanov SA, Korovin SD, Polevin SD, Proskurovsky DI, Rotshtein VP (2004) A nanosecond relativistic high-current electron beam as a tool for materials processing. In: Engelko V, Glukhikh V, Mesyats G, Smirnov V (eds) Proc. of the 15th Intern. Conf. on High-Power Particle Beams (BEAMS-2004). Saint-Petersburg, Russia, pp 630–633

  • Mayer AE, Khishchenko KV, Levashov PR, Mayer PN (2013) Modeling of plasticity and fracture of metals at shock loading. J Appl Phys 113:193508. doi:10.1063/1.4805713

    Article  Google Scholar 

  • Mayer AE, Borodin EN, Krasnikov VS, Mayer PN (2014) Numerical modelling of physical processes and structural changes in metals under intensive irradiation with use of CRS code: dislocations, twinning, evaporation and stress waves. J Phys Conf Ser 552:012002. doi:10.1088/1742-6596/552/1/012002

    Article  Google Scholar 

  • Mesyats GA, Korovin SD, Gunin AV, Gubanov VP, Stepchenko AS, Grishin DM, Landl VF, Alekseenko PI (2003) Repetitively pulsed high-current accelerators with transformer charging of forming lines. Laser Part Beams 21:197–209. doi:10.1017/S0263034603212076

    Google Scholar 

  • Moin E, Murr LE (1979) Interactive effects of shock loading parameters on the substructure and mechanical properties of nickel and stainless steel. Mater Sci Eng 37:249–269. doi:10.1016/0025-5416(79)90158-7

    Article  Google Scholar 

  • Moshe E, Eliezer S, Dekel E, Ludmirsky A, Henis Z, Werdiger M, Goldberg IB (1998) An increase of the spall strength in aluminum, copper, and Metglas at strain rates larger than \(10^{7} {\rm {s}}^{-1}\). J Appl Phys 83:4004–4011. doi:10.1063/1.367222

  • Pavlenko AV, Malyugina SN, Kazakov DN, Zuev YuN, Shestakov AE, Belyaev DA (2012) Plastic deformation and spall fracture of structural 12Cr18Ni10Ti steel. AIP Conf Proc 1426:1137–1140. doi:10.1063/1.3686480

    Article  Google Scholar 

  • Razorenov SV, Utkin AV, Kanel GI, Fortov VE, Yarunichev AS, Baumung K, Karow HU (1995) Response of high-purity titanium to high-pressure impulsive loading. High Press Res 13:367–376. doi:10.1080/08957959508202588

    Article  Google Scholar 

  • Schramm RE, Reed RP (1975) Stacking fault energies of seven austenitic stainless steels. Metall Trans A 6:1345–1351. doi:10.1007/BF02641927

    Article  Google Scholar 

  • Yalovets AP (1997) Calculation of flows of a medium induced by high-power beams of charged particles. J Appl Mech Tech Phys 38:137–150. doi:10.1007/BF02468285

    Article  Google Scholar 

  • Zaretsky E, Kaluzhny M (1996) Fracture threshold and shock induced strengthening of stainless steel. AIP Conf Proc 370:627–630. doi:10.1063/1.50637

    Article  Google Scholar 

  • Zel’dovich YaB, Raizer (1966) Physics of Shock waves and high-temperature hydrodynamic phenomena. Academic Press, New York

    Google Scholar 

Download references

Acknowledgments

The theoretical part of this work was supported by grants from the President of the Russian Federation (MD-286.2014.1 and NSh-6614.2014.2), the Russian Foundation for Basic Research (14-08-00967 and 15-32-21039) and the Ministry of Education and Science of the Russian Federation (competitive part of State Task NIR CSU 3.1334.2014/K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Mayer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnyusov, S.F., Rotshtein, V.P., Mayer, A.E. et al. Simulation and experimental investigation of the spall fracture of 304L stainless steel irradiated by a nanosecond relativistic high-current electron beam. Int J Fract 199, 59–70 (2016). https://doi.org/10.1007/s10704-016-0088-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0088-8

Keywords

Navigation