Skip to main content
Log in

Influence of anisotropy (crystallographic and microstructural) on spallation in Zr, Ta, HY-100 steel, and 1080 eutectoid steel

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The purpose of this study is to quantify the influence of textural and microstructural anisotropy on spallation. This includes the influence of anisotropically-oriented MnS inclusion stringers in the HY-100 and 1080 steels on spallation, within two crystallographically-isotropic steels, and the influence of strong, anisotropic crystallographic texture in high-purity polycrystalline Ta and Zr materials to assess the role of texture on damage evolution and spallation responses. The effect of anisotropic crystallographic texture on the spallation response of Ta and Zr is shown to play a minimal role in the spallation response of each material, as seen in wave profile pull-back signals, compared to the effect of texture on the shock arrival time and the Hugoniot elastic limit that reflects strength in these two high-purity materials. In the case of both the 1080 and HY-100 steels, the influence of elongated MnS stringers, resident within the essentially crystallographically isotropic steels, was found to be dominated by the heterogeneous nucleation of damage orthogonal to the MnS stringers. Delamination between the pearlitic matrix microstructure and the MnS stringers in the 1080 steel, or inclusions and the martensitic matrix in the HY-100 steel, was seen to correlate to a lower pull-back signal during transverse loading than to that parallel to the stringer axis in each steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoun T, Seaman L, Curran DR, Kanel GI, Razorenov SV, Utkin AV (2003) Spall fracture. Springer, Berlin

    Google Scholar 

  • Bronkhorst CA, Hansen BL, Cerreta EK, Bingert JF (2007) Modeling the microstrucutral evolution of metallic polycrystalline materials under localization conditinos. J Mech Phys Solids 55: 2351–2383

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  • Cerreta E, Yablinsky CA, Gray GT III, Vogel SC, Brown DW (2007) The influence of grain size and texture on the mechanical response of high purity hafnium. Mater Sci Eng A 456: 243–251

    Article  Google Scholar 

  • Chan KS, Koss DA (1983) Deformation and fracture of strongly textured ti-alloy sheets in uniaxial tension. Metall Mater Trans 14: 1333–1342

    Article  Google Scholar 

  • Chen SR, Gray GT III (1995) Constitutive behavior of tungsten and tantalum: experiments and modeling. In: Bose A, Dowding RJ (eds) Proceedings of the 2nd international conference on tungsten and refractory metals, metal powders industries federation, Princeton, New Jersey, pp 489–498

  • Chen SR, Gray GT III (1996) Constitutive behavior of tantalum and tantalum-tungsten alloys. Metall Mater Trans A 27: 2994–3006

    Article  Google Scholar 

  • Clements BE, Mas EM, Gray GT III (2002) Investigation of the observed anisotropic fracture in steels. In: Furnish MD, Thadhani NN, Horie Y (eds) Shock compression of condensed matter—2001. American Institute of Physics, Melville, pp 535–538

    Google Scholar 

  • Golubev VK, Novikov SA, Sobolev YS, Yukina NA (1983) Nature of spalling failure for aluminum alloys D16 and AMg6 in the temperature range −196 to 600° C. Strength Mater 15: 214–220

    Article  Google Scholar 

  • Goto DM, Koss DA, Jablokov V (1999) The influence of tensile stress states on the failure of HY-100 steel. Metall Mater Trans A 30: 2835–2842

    Article  Google Scholar 

  • Goto DM, Bingert JF, Chen SR, Gray GT III, Garrett RK Jr (2000a) The mechanical threshold stress constitutive-strength model description of HY-100 steel. Metall Mater Trans A 31: 1985–1996

    Article  Google Scholar 

  • Goto DM, Bingert JF, Reed WR, Garrett RK (2000b) Anisotropy-corrected MTS constitutive strength modeling in HY-100 steel. Scripta Mater 42: 1125–1131

    Article  CAS  Google Scholar 

  • Grady DE (1988) The spall strength of condensed matter. J Mech Phys Solids 36: 353–384

    Article  ADS  Google Scholar 

  • Gray GT III, Rollett AD (1992) The high strain rate and spallation response of tantalum, Ta-10W, and T-111. In: Asfahani R, Chen E, Crowson A (eds) High strain rate behavior of refractory metals and alloys, the minerals, metals and materials society. Warrendale, Pennsylvania, pp 303–316

    Google Scholar 

  • Gray GT III, Vecchio KS, Lopez MF (2001) Influence of microstructural anisotropy on the quasi-static ad dynamic fracture of 1080 eutectoid steel. In: Staudhammer KP, Murr LE, Meyers MA (eds) Fundamental issues and applications of shock-wave and high-strain-rate phenomena. Elsevier Science Ltd, New York, pp 157–163

    Chapter  Google Scholar 

  • Gray GT III, Bourne NK, Millett JCF (2003) Shock response of tantalum: lateral stress and shear strength through the front. J Appl Phys 94: 6430–6436

    Article  CAS  ADS  Google Scholar 

  • Gray GT III, Thompson AW, Williams JC, Stone DH (1982) The effect of microstructure on the fatigue crack propagation in pearlite eutectoid steels. Can Met Quart 21: 73–78

    Google Scholar 

  • Gray GT III, Williams JC, Thompson AW (1983) Roughness-induced crack closure: an explanation for microstructurally sensitive fatigue crack growth. Metall Trans 14A: 421–433

    Google Scholar 

  • Gray GT III, Bourne NK, Zocher MA, Maudlin PJ, Millett JCF (2000) Influence of crystallographic anisotropy on the Hopkinson fracture ‘spallation’ of zirconium. In: Furnish MD, Chhabildas LC, Hixson RS (eds) Shock compression of condensed matter—1999. American Institute of Physics, Melville, pp 509–512

    Google Scholar 

  • Hemsing WF (1979) Velocity sensing interferometer (VISAR) modification. Rev Sci Instrum 50: 73–78

    Article  CAS  PubMed  ADS  Google Scholar 

  • Johnson JN (1981) Dynamic fracture and spallation in ductile solids. J Appl Phys 52: 2812–2825

    Article  ADS  Google Scholar 

  • Johnson JN, Hixson RS, Gray GT, Morris CE (1992) Quasi-elastic release in shock-compressed solids. J Appl Phys 72: 429–441

    Article  CAS  ADS  Google Scholar 

  • Johnson JN, Hixson RS, Gray GT III (1994a) Impact loading of an aluminum/alumina composite. J Phys IV Fr Colloq C8 (DYMAT 94) 4: 325–330

    Google Scholar 

  • Johnson JN, Hixson RS, Gray GT III (1994b) Shock wave compression and release of aluminum/ceramic composites. J Appl Phys 76: 5706–5718

    Article  CAS  ADS  Google Scholar 

  • Johnson JN, Hixson RS, Tonks DL, Gray GT III (1994c) Shock compression and quasielastic release in tantalum. In: Schmidt SC, Shaner JW, Samara GA, Ross M (eds) High pressure science and technology 1993. American Institute of Physics, New York, pp 1095–1098

    Google Scholar 

  • Kanel GI, Rasorenov SV, Fortov VE (1992a) Constitutive factors of a spall fracture. In: Guanren Z, Shihui H (eds) Proceedings of the 2nd international symposium on intense dynamic loading and its effects. Sichuan University Press, Chengdu, P.R. China, pp 364–367

    Google Scholar 

  • Kanel GI, Rasorenov SV, Fortov VE (1992b) The dynamic strength of copper single crystals. In: Meyers MA, Murr LE, Staudhammer KP (eds) Shock-wave and high-strain-rate phenomena in materials. Marcel-Dekker, New York, pp 775–782

    Google Scholar 

  • Kanel GI, Razorenov SV, Utkin AV, Fortov VE, Baumung K, Karow HU, Rusch D, Licht V (1993) Spall strength of molybdenum single crystals. J Appl Phys 74: 7162–7165

    Article  CAS  ADS  Google Scholar 

  • Kaschner GC, Gray GT III (2000) The influence of crystallographic texture and interstitial impurities on the mechanical behavior of zirconium. Metall Mater Trans A 31A: 1997–2003

    Article  CAS  Google Scholar 

  • Kaschner GC, Gray GT III, Chen SR (1998) The influence of texture and impurities on the mechanical behavior of zirconium. In: Schmidt SC, Dandekar DP, Forbes JW (eds) Shock compression of condensed matter—1997. American Institute of Physics, Woodbury, New York, pp 435–438

    Google Scholar 

  • Leach P, Woodward R (1985) The influence of microstructural anisotropy on the mode of plate failure during projectile impact. J Mater Sci 20: 854–858

    Article  CAS  ADS  Google Scholar 

  • Legarth BN (2003) Debonding of particles in anisotropic materials. Int J Mech Sci 45: 1119–1133

    Article  MATH  Google Scholar 

  • Maudlin PJ, Bingert JF, Gray GT III (2003) Low-symmetry plastic deformation in bcc tantalum: experimental observations, modeling and simulations. Int J Plast 19: 483–515

    Article  MATH  CAS  Google Scholar 

  • Maudlin PJ, Tome CN, Kaschner GC, Gray GT III (1998) Introduction of polycrystal constitutive laws in a finite element code with applications to zirconium forming. In: Huetink J, Baaijens FP (eds) Simulation of materials processing: theory, methods and applications. A.A. Balkema, Brookfield, pp 309–313

    Google Scholar 

  • Maudlin PJ, Bingert JF, House JW, Chen SR (1999a) On the modeling of the Taylor cylinder impact test for orthotropic textured materials: experiments and simulations. Int J Plast 15: 139–166

    Article  MATH  CAS  Google Scholar 

  • Maudlin PJ, Gray GT III, Cady CM, Kaschner GC (1999b) High-rate material modelling and validation using the Taylor cylinder impact test. Phil Trans R Soc Lond A 357: 1707–1729

    Article  CAS  ADS  Google Scholar 

  • Meyers MA, Aimone CT (1983) Dynamic fracture (spalling) of metals. Prog Mater Sci 28: 1–96

    Article  CAS  Google Scholar 

  • Minich RW, Cazamias JU, Kumar M, Schwartz AJ (2004) Effect of microstructural length scales on spall behavior of copper. Metall Mater Trans A 35: 2662–2673

    Article  Google Scholar 

  • Rinehart JS (1964) Fracturing by spalling. Wear 7: 315–329

    Article  Google Scholar 

  • Rinehart JS, Pearson J (1954) Behavior of metals under impulsive loads. American Society for Metals, Cleveland, Ohio

    Google Scholar 

  • Romanchenko VI, Marusii OI, Kramarenko IV (1983) Microstructure of an aluminum alloy at early stages of spalling. Strength Mater 15: 1294–1298

    Article  Google Scholar 

  • Rosenberg Z, Yaziv D, Partom Y (1980) Direct measurement of strain in plane impact experiments by a longitudinal resistance gauge. J Appl Phys 51: 4790–4798

    Article  CAS  ADS  Google Scholar 

  • Sevillano JG, Meizoso AM (1988) The influence of texture on fracture. In: Kallend JS, Gottstein G (eds) 8th international conference on textures of materials (ICOTOM 8). The Metallurgical Society, pp 897–911

  • Stepovik AP (1989) Effect of structure orientation of the initial material on spall damages of the D16 and AMg6 alloys. Strength Mater 21: 690–693

    Article  Google Scholar 

  • Thissell WR, Zurek AK, Macdougall DAS, Tonks D (2000a) Damage evolution and damage model validation in spalled tantalum. J Phys IV France Pr 9 (DYMAT 2000) 10: 769–774

    Google Scholar 

  • Thissell WR, Zurek AK, Tonks DL, Hixson RS (2000b) Experimental quantitative damage measurements and void growth model predictions in the spallation of tantalum. In: Furnish MD, Chhabildas LC, Hixson RS (eds) Shock compression of condensed matter—1999. American Institute of Physics, Melville, New York, pp 451–454

    Google Scholar 

  • Zurek AK, Thissell WR, Johnson JN, Tonks DL, Hixson R (1996) Micromechanics of spall and damage in tantalum. J Mater Process Technol 60: 261–267

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. T. Gray III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, G.T., Bourne, N.K., Vecchio, K.S. et al. Influence of anisotropy (crystallographic and microstructural) on spallation in Zr, Ta, HY-100 steel, and 1080 eutectoid steel. Int J Fract 163, 243–258 (2010). https://doi.org/10.1007/s10704-009-9440-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9440-6

Keywords

Navigation