Skip to main content
Log in

Stress analysis and configurational forces for cracks in TRIP-steels

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

TRIP-steels are known to possess attractive mechanical properties attributed to the austenite-martensite phase transformation, which provides additional deformability and hardening. In the present work the influence of strain-induced phase transformation on fracture is studied numerically for a casted TRIP-steel utilizing a recently developed material model. Large strain finite element analyses are carried out for a two-dimensional crack under small-scale yielding conditions to determine mechanical fields and fracture characterizing parameters. The results show that the hardening effect of martensite formation causes increased stresses and stress triaxiality ahead of the crack tip, which has implications for failure behavior. In order to generalize the classical J-integral for transformation plasticity, the concept of material forces is applied and numerically implemented. An appropriate path-independent formulation of the J-integral is suggested for TRIP-steels. A considerable amount of material forces is due to plastic deformation and phase transformation. The resultant material force at the crack tip is considered as the relevant energetic driving force for fracture. Furthermore, crack growth resistance curves \(J-{\varDelta } a\) are simulated by means of a cohesive zone model, which allows to simulate the intrinsic fracture toughness. From the analyses, the beneficial impact of strain-induced phase transformation on the fracture resistance R-curves can be concluded. The transformation zone affects an energetic shielding of the very fracture process zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The stress triaxiality is not shown here explicitly. Nevertheless, increase in stress triaxiality is indicated by higher stress components in Fig. 5a.

References

  • Antolovich SD, Fahr D (1972) An experimental investigation of the fracture characteristics of TRIP alloys. Eng Fract Mech 4:133–144. doi:10.1016/0013-7944(72)90083-5

    Article  Google Scholar 

  • Antolovich SD, Singh B (1971) On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels. Metall Mater Trans B 2:2135–2141. doi:10.1007/BF02917542

    Article  Google Scholar 

  • Burgold A, Kuna M, Prüger S (2014) Material forces in consideration of phase transformation in TRIP-steel. Procedia Mater Sci 3:461–466. doi:10.1016/j.mspro.2014.06.077 20th European Conference on Fracture

    Article  Google Scholar 

  • Chatterjee S, Bhadeshia HKDH (2006) TRIP-assisted steels: cracking of high-carbon martensite. Mater Sci Technol 22:645–649. doi:10.1179/174328406X86182

    Article  Google Scholar 

  • Fischer FD, Reisner G, Werner E, Tanaka K, Cailletaud G, Antretter T (2000) A new view on transformation induced plasticity TRIP. Int J Plast 16:723–748. doi:10.1016/S0749-6419(99)00078-9

    Article  Google Scholar 

  • Gerberich WW, Hemmings PL, Zackay VF (1971) Fracture and fractography of metastable austenites. Metall Mater Trans B 2:2243–2253. doi:10.1007/BF02917557

    Article  Google Scholar 

  • Gross D, Kolling S, Mueller R, Schmidt I (2003) Configurational forces and their application in solid mechanics. Eur J Mech A 22:669–692

    Article  Google Scholar 

  • Gurtin ME (2000) Configurational forces as basic concept of continuum physics. Springer, Berlin

    Google Scholar 

  • Hallberg H, Håkansson P, Ristinmaa M (2007) A constitutive model for the formation of martensite in austenitic steels under large strain plasticity. Int J Plast 23:1213–1239. doi:10.1016/j.ijplas.2006.11.002

    Article  Google Scholar 

  • Hallberg H, Banks-Sills L, Ristinmaa M (2012) Crack tip transformation zones in austenitic stainless steel. Eng Fract Mech 79:266–280. doi:10.1016/j.engfracmech.2011.11.004

    Article  Google Scholar 

  • Hutchinson JW (1968) Singular behavior at the end of a tensile crack tip in a hardening material. J Mech Phys Solids 16:13–31

    Article  Google Scholar 

  • Iwamoto T (2004) Multiscale computational simulation of deformation behavior of TRIP steel with growth of martensitic particles in unit cell by asymptotic homogenization method. Int J Plast 20:841–869. doi:10.1016/j.ijplas.2003.05.002

    Article  Google Scholar 

  • Iwamoto T, Tsuta T (2002) Computational simulation on deformation behavior of CT specimens of TRIP steel under mode I loading for evaluation of fracture toughness. Int J Plast 18:1583–1606. doi:10.1016/S0749-6419(02)00030-X

    Article  Google Scholar 

  • Jacques P, Furnemont Q, Pardoen T, Delannay F (2001) On the role of martensitic transformation on damage and cracking resistance in TRIP-assisted multiphase steels. Acta Mater 49:139–152. doi:10.1016/S1359-6454(00)00215-9

    Article  Google Scholar 

  • Jikai L, Coret M, Combescure A, Chaudet P (2012) J-integral based fracture toughness of 15Cr-5Ni stainless steel during phase transformation. Eng Fract Mech 96:328–339. doi:10.1016/j.engfracmech.2012.08.001

    Article  Google Scholar 

  • Kienzler R, Herrmann G (2000) Mechanics in material space. With application to defect and fracture mechanics. Springer, Berlin

    Google Scholar 

  • Krüger L, Wolf S, Martin U, Scheller P, Jahn A, Weidner A (2009) Strain rate and temperature effects on stress–strain behaviour of cast high alloyed CrMnNi-steel. In: 9th international conference on the mechanical and physical behaviour of materials under dynamic loading, DYMAT 2009, Brussels, pp 1069–1074. doi:10.1051/dymat/2009149

  • Krüger L, Wolf S, Martin S, Martin U, Jahn A, Weidner A, Scheller P (2011) Strain rate dependent flow stress and energy absorption behaviour of cast CrMnNi TRIP/TWIP steels. Steel Res Int 82:1087–1093. doi:10.1002/srin.201100067

    Article  Google Scholar 

  • Kuna M (2013) Finite elements in fracture mechanics: theory - numerics - applications. Springer Science+Business Media, Dordrecht

    Book  Google Scholar 

  • Lacroix G, Pardoen T, Jacques PJ (2008) The fracture toughness of TRIP-assisted multiphase steels. Acta Mater 56:3900–3913. doi:10.1016/j.actamat.2008.04.035

    Article  Google Scholar 

  • Lee MG, Kim SJ, Han HN (2010) Crystal plasticity finite element modeling of mechanically induced martensitic transformation (MIMT) in metastable austenite. Int J Plast 26:688–710. doi:10.1016/j.ijplas.2009.10.001

    Article  Google Scholar 

  • Maugin GA (1993) Material inhomogeneities in elasticity. Chapman & Hall, London

    Book  Google Scholar 

  • McMeeking RM (1977) Finite deformation analysis of crack-tip opening in elastic–plastic materials and implications for fracture. J Mech Phys Solids 25:357–381. doi:10.1016/0022-5096(77)90003-5

    Article  Google Scholar 

  • Moran B, Shih CF (1987) Crack tip and associated domain integrals from momentum and energy balance. Eng Fract Mech 27:615–642

    Article  Google Scholar 

  • Müller R, Kolling S, Gross D (2002) On configurational forces in the context of the finite element method. Int J Numer Meth Eng 53:1557–1574

    Article  Google Scholar 

  • Neimitz A, Graba M, Galkiewicz J (2007) An alternative formulation of the Ritchie–Knott–Rice local fracture criterion. Eng Fract Mech 74:1308–1322. doi:10.1016/j.engfracmech.2006.07.015

    Article  Google Scholar 

  • Nguyen T, Govindjee S, Klein P, Gao H (2005) A material force method for inelastic fracture mechanics. J Mech Phys Solids 53:91–121

    Article  Google Scholar 

  • Olson GB, Cohen M (1975) Kinetics of strain-induced martensitic nucleation. Metall Trans A 6:791–795. doi:10.1007/BF02672301

    Article  Google Scholar 

  • Papatriantafillou I, Agoras M, Aravas N, Haidemenopoulos G (2006) Constitutive modeling and finite element methods for TRIP steels. Comput Methods Appl Mech Eng 195:5094–5114. doi:10.1016/j.cma.2005.09.026

    Article  Google Scholar 

  • Prüger S, Kuna M, Nagel K, Biermann H (2011a) Implementation of a material model for a cast TRIP-steel. In: Computational plasticity XI - fundamentals and applications, 11th international conference on computational plasticity, Barcelona, pp 858–869

  • Prüger S, Kuna M, Wolf S, Krüger L (2011b) A material model for TRIP-steels and its application to a CrMnNi cast alloy. Steel Res Int 82:1070–1079. doi:10.1002/srin.201100072

    Article  Google Scholar 

  • Prüger S, Seupel A, Kuna M (2014) A thermomechanically coupled material model for TRIP-steel. Int J Plast 55:182–197. doi:10.1016/j.ijplas.2013.10.005

    Article  Google Scholar 

  • Rice JR, Rosengren GF (1968) Plain strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 16:1–12

    Article  Google Scholar 

  • Ritchie RO, Knott JF, Rice JR (1973) On the relationship between critical tensile stress and fracture toughness in mild steel. J Mech Phys Solids 21:395–410. doi:10.1016/0022-5096(73)90008-2

  • Simha NK, Fischer FD, Shan GX, Chen CR, Kolednik O (2008) J-integral and crack driving force in elastic-plastic materials. J Mech Phys Solids 56:2876–2895

    Article  Google Scholar 

  • Socrate S (1995) Mechanics of microvoid nucleation and growth in high-strength metastable austenitic steels. PhD thesis, Department of Mechanical Engineering, Massachusets Institute of Technology

  • Stringfellow R (1990) Mechanics of strain-induced transformation toughening in metastable austenitic steels. PhD thesis, Department of Mechanical Engineering, Massachusets Institute of Technology

  • Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. J Mech Phys Solids 40:1377–1397

  • Wolf S (2012) Temperatur- und dehnratenabhängiges Werkstoffverhalten einer hochlegierten CrMnNi-TRIP/TWIP-Stahlgusslegierung unter einsinniger Zug- und Druckbeanspruchung. PhD thesis, TU Freiberg, (in german)

Download references

Acknowledgments

The authors gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG) for supporting this work carried out in the Collaborative Research Center TRIP-Matrix Composite (SFB 799, C5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meinhard Kuna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuna, M., Burgold, A. & Prüger, S. Stress analysis and configurational forces for cracks in TRIP-steels. Int J Fract 193, 171–187 (2015). https://doi.org/10.1007/s10704-015-0027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-015-0027-0

Keywords

Navigation