Skip to main content
Log in

A proposed mixed-mode fracture specimen for wood under creep loadings

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A mixed-mode fracture specimen was designed in this paper. This geometry is a judicious compromise between a modified Double Cantilever Beam specimen and Compact Tension Shear specimens. The main objective is to propose a specimen which traduces a stable crack growth during creep loading taking into account viscoelastic behaviour under mixed-mode loadings. The numerical design is based on the instantaneous response traduced by a crack growth stability zone. This zone is characterized by a decrease of the instantaneous energy release rate versus the crack length. In order to obtain a mixed-mode separation, the paper deals with the use of the M-integral approach implemented in finite element software, according to energetic fracture criterions. In these considerations, a numerical geometric optimization is operated for different mixed-mode ratios. Finally, a common specimen which provides to obtain fracture parameters, viscoelastic properties and creep crack growth process for different mixed-mode configurations is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando K, Ohta M (1999) Variability of fracture toughness by the crack tip position in an annual ring of coniferous wood. J Wood Sci 45: 275–283. doi:10.1007/BF00833491

    Article  Google Scholar 

  • Attigui M, Petit C (1999) Mixed-mode separation in dynamic fracture mechanics: new path independent integrals. Int J Fract 84: 19–36. doi:10.1023/A:1007358701493

    Article  Google Scholar 

  • Banks-Sills L, Arcan M, Bortman Y (1984) A mixed-mode fracture specimen for mode II dominant deformation. Eng Fract Mech 20: 145–157

    Article  Google Scholar 

  • Banks-Sills L, Hershkovitz I, Wawrzynek PA, Eliasi R, Ingraffea AR (2005) Methods for calculating stress intensity factors in anisotropic materials: part I—z = 0 is a symmetric plane. Eng Fract Mech 72: 2328–2358

    Article  Google Scholar 

  • Banks-Sills L, Wawrzynek PA, Carter B, Ingraffea AR, Hershkovitz I (2007) Methods for calculating stress intensity factors in anisotropic materials: part II—arbitrary geometry. Eng Fract Mech 74: 1293–1307

    Article  Google Scholar 

  • Bao G, Ho S, Suo Z, Fan B (1992) The role of material orthotropy in fracture specimens for composites. Int J Solids Struct 29: 1105–1116

    Article  Google Scholar 

  • Chen FMK, Shield RT (1977) Conservation laws in elasticity of J-integral type. J Appl Mech Phys 28: 1–22

    Article  CAS  Google Scholar 

  • Chow CL, Woo CW (1979) Orthotropic and mixed mode fracture in wood. In: Proceedings of the 1st international conference of wood fracture. Vancouver, pp 39–52

  • Cramer SM, Pugel AD (1987) Compact shear specimen for wood mode II fracture investigations. Int J Fract 35: 163. doi:10.1007/BF00015586

    Article  Google Scholar 

  • De Moura MFSF, Silva MAL, de Morais AB, Morais JJL (2006) Equivalent crack based mode II fracture characterization of wood. Eng Fract Mech 73: 978–993. doi:10.1016/j.engfracmech.2007.03.005

    Article  Google Scholar 

  • Destuynder P, Djaoua M, Lescure S (1983) Quelques remarques sur la mécanique de la rupture élastique. J Mec Theor Appl 2: 113–135

    Google Scholar 

  • Dubois F, Chazal C, Petit C (1999) A finite element analysis of creep-crack growth in viscoelastic media. Mech Time Dependent Mat 2: 269–286. doi:10.1023/A:1009831400270

    Article  Google Scholar 

  • Dubois F, Chazal C, Petit C (2002) Viscoelastic crack growth process in wood timbers: an approach by the finite element method for mode I fracture. Int J Fract 113: 367–388. doi:10.1023/A:1014203405764

    Article  Google Scholar 

  • Dubois F, Petit C (2005) Modelling of the crack growth initiation in viscoelastic media by the Gθv-integral. Eng Fract Mech 72: 2821–2836

    Article  Google Scholar 

  • Guittar D (1987) Mécanique du matériau bois et composites, CEPADUES-EDITIONS. Collection NABLA

  • Guo YJ, Weitsman YJ (2004) A modified specimen for evaluating the mixed mode fracture toughness of adhesives. Int J Fract 107: 1573–2673. doi:10.1023/A:1007618718262

    Google Scholar 

  • Ma S, Zhang XB, Recho N, Li J (2006) The mixed-mode investigation of the fatigue crack in CTS metallic specimen. Int J Fatigue 28: 1780–1790. doi:10.1016/j.ijfatigue.2006.01.005

    Article  CAS  Google Scholar 

  • Mackerle J (2005) Finite element analysis in wood research: a bibliography. Wood Sci Technol 39: 579–600. doi:10.1007/s00226-005-0026-9

    Article  CAS  Google Scholar 

  • Mindess S, Bentur A (1986) Crack propagation in notched wood specimens with different grain orientations. Wood Sci Technol 20: 145–155. doi:10.1007/BF00351026

    Google Scholar 

  • Morel S (2007) R-curve and size effect in quasibrittle fracture: case of notched structures. Int J Fract 44: 4272–4290

    Google Scholar 

  • Moura MFSF, Silva MAL, de Morais AB, Morais JJL (2007) Equivalent crack based mode II fracture characterization of wood. Eng Fract Mech 73: 978–993. doi:10.1016/j.engfracmech.2007.03.005

    Google Scholar 

  • Moutou Pitti R, Dubois F, Petit C, Sauvat N (2006) Fracture of wood under mixed mode loading: numerical approach by the Mθ v-integral. In: 9th word conference of timber engineering Portland OR, USA, August 6–10

  • Moutou Pitti R, Dubois F, Pop O, Sauvat N, Petit C (2007a) Mv-integral for the crack growth in a viscoelastic media. C R Mécanique 335: 727–731. doi:10.1016/j.crme.2007.07.004

    Article  Google Scholar 

  • Moutou Pitti R, Dubois F, Petit C, Sauvat N (2007b) Mixed mode fracture separation in viscoelastic orthotropic media: numerical and analytical approach by the Mθv-integral. Int J Fract 145: 181–193. doi:10.1007/s10704-007-9111-4

    Article  Google Scholar 

  • Moutou Pitti R, Dubois F, Petit C et al (2008) A new M integral parameter for mixed mode crack growth in orthotropic viscoelastic material. Eng Fract Mech 75: 4450–4465. doi:10.1016/j.engfracmech.2008.04.021

    Article  Google Scholar 

  • Moutou Pitti R, Dubois F, Pop O, Absi J (2009) A finite element analysis for mixed mode crack growth in a viscoelastic and orthotropic medium. Int J Solids Struct 46: 3548–3555. doi:10.1016/j.ijsolstr.2009.05.020

    Article  Google Scholar 

  • Noether E (1971) Invariant variations problems. Trans Theor Stat Phys 1: 183–207

    Article  Google Scholar 

  • Oliveira JMQ, De Moura MFSF, Silva MAL, Morais JJL (2007) Numerical analysis of the MMB test for mixed-mode I/II wood fracture. Compos Sci Technol 67: 1764–1771. doi:10.1016/j.compscitech.2006.11.007

    Article  Google Scholar 

  • Rice JR (1968) A path independent integral and the approximate analysis of strain conservation by notches and cracks. J Appl Mech 35: 379–385

    Google Scholar 

  • Richard HA (1981) A new compact shear specien. Int J Fract 17: R105–R107. doi:10.1007/BF00033347

    Google Scholar 

  • Richard HA, Benitz K (1983) A loading device for the creation of mixed mode in fracture mechanics. Int J Fract 22: R55–R58. doi:10.1007/BF00942726

    Article  Google Scholar 

  • Sedighi-Gilani M, Job L, Navi P (2006) Three-dimensional modelling of wood fracture in mode I, perpendicular to the grain direction, at fibre level. Wood Mater Sci Eng 1: 52–58. doi:10.1080/17480270600881835

    Article  Google Scholar 

  • Sih GC (1974) Strain energy density factor applied to mixed mode crack problems. Int J Fract 10: 305–321. doi:10.1007/BF00035493

    Article  Google Scholar 

  • Silva MAL, Moura MFSF, Morais JJL (2006) Numerical analysis of the ENF test for mode II fracture. Compos Part A Appl Sci Manuf 37: 1334–1344. doi:10.1016/j.compositesa.2005.08.014

    Article  Google Scholar 

  • Tenchev RT, Falzon BG (2007) A correction to the analytical solution of the mixed-mode bending (MMB) problem. Compos Sci Technol 67: 662–668

    Article  Google Scholar 

  • Valentin G, Morlier P (1982) A criterion of crack propagation in timber. Mat Constructions 88: 291–298

    Article  Google Scholar 

  • Valentin G, Caumes P (1989) Crack propagation in mixed mode in wood: a new specimen. Wood Sci Technol 23: 43–53. doi:10.1007/BF00350606

    Article  Google Scholar 

  • Xu Y, Yuan H (2009) Computational modelling of mixed-mode fatigue crack growth using extended finite element methods. Int J Fract 159: 151–165. doi:10.1007/s10704-009-9391-y

    Article  Google Scholar 

  • Yoshihara H, Ohta M (2000) Measurements of mode II fracture toughness of wood by end-notched flexure test. J Wood Sci 46: 273–278

    Article  Google Scholar 

  • Yoshihara H (2008) Theoretical analysis of 4-ENF test for mode II fracturing in wood by finite element method. Eng Fract Mech 75: 290–296. doi:10.1016/j.engfracmech.2007.03.043

    Article  Google Scholar 

  • Zhang XB, Ma S, Recho N, Li J (2006) Bifurcation and propagation of a mixed-mode crack in a ductile material. Eng Fract Mech 73: 1925–1939. doi:10.1016/j.engfracmech.2005.12.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rostand Moutou Pitti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moutou Pitti, R., Dubois, F. & Pop, O. A proposed mixed-mode fracture specimen for wood under creep loadings. Int J Fract 167, 195–209 (2011). https://doi.org/10.1007/s10704-010-9544-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9544-z

Keywords

Navigation