Skip to main content
Log in

Appropriate fitted point on fracture limit curve of orthotropic materials to include the fracture process zone effects on mixed-mode I/II fracture criterion

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The fracture phenomenon in orthotropic materials is associated with the formation of the fracture process zone at the crack tip. Several toughening mechanisms in this zone delay the fracture by absorbing energy. The activation of these mechanisms and the extent of their effects depend on the loading mode. In this paper, the behavior of the fracture process zone under different loading modes is investigated. In the following, considering the fracture process zone effects, a new mixed-mode I/II fracture criterion is presented to investigate the crack growth behavior of orthotropic materials. In this criterion, by extending the minimum strain energy density theory to orthotropic materials and fitting the fracture limit curve to a midpoint (a mixed-mode I/II point) instead of the pure mode I point, a greater portion of the energy absorbed in the fracture process zone is considered. To validate the presented criterion, the related fracture limit curves are compared with the available experimental data for laminated composites and wood species as orthotropic materials. The results show that the newly proposed criterion, unlike the available conservative ones, especially around predominantly mode II, is more compatible with the nature of the failure phenomena in orthotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(W\) :

Strain energy

\(\sigma_{ij}\) :

Stress field around the crack tip

\(\varepsilon_{ij}\) :

Strain field around the crack tip

\(K_{I}\) , \(K_{II}\) :

Mode I and mode II stress intensity factor

\(K_{Ic}\) , \(K_{IIc}\) :

Mode I and mode II fracture toughness

\(K_{{I_{Mid} }}\) , \(K_{{II_{Mid} }}\) :

Mode I and mode II stress intensity factor of midpoint

\(r\) :

Distance from the crack tip

\(\theta\) :

Angle from the crack tip

\(\theta_{0}\) :

Crack initiation angle

\(\theta_{{0_{I} }}\), \(\theta_{{0_{II} }}\) :

Crack initiation angle under pure mode I and pure mode II loading

\(\theta_{{0_{I/II} }}\) :

Crack initiation angle under mixed-mode I/II loading

\(C_{ij}\) :

Components of compliance matrix for the plane stress conditions

\(C^{\prime}_{ij}\) :

Components of compliance matrix for the plane strain conditions

\(S\) :

Strain energy density factor

\(S_{c}\) :

Critical strain energy density factor

\(\rho\) :

Damage factor

\(\rho^{\prime}\) :

Modified damage factor

\(\alpha_{i} ,\;\;i = 1,2\) :

Inverse of defined damage factors

\(E_{i} ,\;\;i = 1,2,3\) :

Young’s moduli in the i direction

\(G_{ij}\) :

Shear modulus

\(\nu_{ij}\) :

Poisson’s ratio

FPZ:

Fracture process zone

SER:

Strain energy release

SED:

Strain energy density

MTS:

Maximum tangential stress

LEFM:

Linear-elastic fracture mechanics

SERR:

Strain energy release rate

SEM:

Scanning electron microscope

DCB:

Double cantilever beam

MMB:

Mixed-mode bending

ENF:

End-notched flexure

SIF:

Stress intensity factor

References

  1. Golewski, G.L., Szostak, B.: Strength and microstructure of composites with cement matrixes modified by fly ash and active seeds of C–S–H phase. Struct. Eng. Mech. 82(4), 543–556 (2022)

    Google Scholar 

  2. Yao, L., Alderliesten, R.C., Zhao, M., Benedictus, R.: Bridging effect on mode I fatigue delamination behavior in composite laminates. Compos. Part A 63, 103–109 (2014)

    Google Scholar 

  3. Golewski, G.L.: On the special construction and materials conditions reducing the negative impact of vibrations on concrete structures. Mater. Today: Proc. 45, 4344–4348 (2021)

    Google Scholar 

  4. Li, Y.D., Xiong, T., Cai, Q.G.: Coupled interfacial imperfections and their effects on the fracture behavior of a layered multiferroic cylinder. Acta Mech. 226(4), 1183–1199 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Shokrieh, M.M., Daneshjoo, Z., Fakoor, M.: A modified model for simulation of mode I delamination growth in laminated composite materials. Theor. Appl. Fract. Mech. 82, 107–116 (2016)

    Google Scholar 

  6. Odounga, B., Moutou Pitti, R., Toussainta, E., Grédiac, M.: Experimental investigation of mixed mode fracture of tropical wood material. Procedia Struct. Integr. 13, 347–352 (2018)

    Google Scholar 

  7. Golewski, G.L.: Fracture performance of cementitious composites based on quaternary blended cements. Materials 15(17), 6023 (2022)

    Google Scholar 

  8. Moutou Pitti, R., Dubois, F., Octavian, P.: On a specimen providing stable mixed mode crack growth in wood material. C. R. - Mec. 336(6), 744–749 (2008)

    MATH  Google Scholar 

  9. Golewski, G.L.: Comparative measurements of fracture toughgness combined with visual analysis of cracks propagation using the DIC technique of concretes based on cement matrix with a highly diversified composition. Theor. Appl. Fract. Mech. 121, 103553 (2022)

    Google Scholar 

  10. Fakoor, M., Shokrollahi, M.S.: A new macro-mechanical approach for investigation of damage zone effects on mixed mode I/II fracture of orthotropic materials. Acta Mech. 229, 3537–3556 (2018)

    Google Scholar 

  11. Golewski, G.L.: An assessment of microcracks in the interfacial transition zone of durable concrete composites with fly ash additives. Compos. Struct. 200, 515–520 (2018)

    Google Scholar 

  12. Golewski, G.L.: An extensive investigations on fracture parameters of concretes based on quaternary binders (QBC) by means of the DIC technique. Constr. Build. Mater. 351, 128823 (2022)

    Google Scholar 

  13. Banks-Sills, L., Ashkenazi, D.: A note on fracture criteria for interface fracture. Int. J. Fract. 103, 177–188 (2000)

    Google Scholar 

  14. Reeder, J.R.: 3D Mixed-mode delamination fracture criteria– an experimentalist’s perspective. In: American Society for Composites 21st Annual Technical Conference. Dearborn, MI: United States (2006)

  15. Perelmuter, M.: Nonlocal criterion of bridged cracks growth: analytical analysis. Acta Mech. 226(2), 397–418 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Riahi, H., Moutou Pitti, R., Dubois, F., Chateauneuf, A.: Mixed-mode fracture analysis combining mechanical, thermal and hydrological effects in an isotropic and orthotropic material by means of invariant integrals. Theor. Appl. Fract. Mech. 85, 424–434 (2016)

    Google Scholar 

  17. Fakoor, M., Manafi Farid, H.: Mixed-mode I/II fracture criterion for crack initiation assessment of composite materials. Acta Mech. 230, 281–301 (2019)

    MathSciNet  Google Scholar 

  18. Shahsavar, S., Fakoor, M., Berto, F.: Verification of reinforcement isotropic solid model in conjunction with maximum shear stress criterion to anticipate mixed mode I/II fracture of composite materials. Acta Mech. 231, 5105–5124 (2020)

    Google Scholar 

  19. Wu, E.M.: Application of fracture mechanics to anisotropic plates. J. Appl. Mech. 34(4), 967–974 (1976)

    Google Scholar 

  20. Williams, J.G., Birch, M.W.: Mixed mode fracture in anisotropic media. Cracks Fract. 601(1), 125–137 (1976)

    Google Scholar 

  21. Mall, S., Murphy, J.F., Shottafer, J.E.: Criterion for mixed mode fracture in wood. J. Eng. Mech. 109(3), 680–690 (1983)

    Google Scholar 

  22. Lin, W.H., Tsai, Y.M.: Fracture of hybrid laminates containing a pair of collinear cracks in the central layer. Acta Mech. 82(3), 159–173 (1990)

    MATH  Google Scholar 

  23. Reeder, J.R.: A Bilinear Failure Criterion for Mixed-mode Delamination. In: Camponeschi, E.T. (ed.) composite materials: testing and design, eleventh, pp. 303–322. American Technical Publishers Ltd, Orland Park (1993)

    Google Scholar 

  24. Benzeggagh, M.L., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Tech. 56(4), 439–449 (1996)

    Google Scholar 

  25. Griffith, A.A.: The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. A 221, 163–197 (1921)

    MATH  Google Scholar 

  26. Sih, G.C.: Strain-energy density factor applied to mixed mode crack problems. Int. J. Fract. 10(3), 305–321 (1974)

    Google Scholar 

  27. Jernkvist, L.O.: Fracture of wood under mixed mode loading: I. Derivation of fracture criteria. Eng. Fract. Mech. 68(5), 549–563 (2001)

    Google Scholar 

  28. Jernkvist, L.O.: Fracture of wood under mode loading, II: Experimental investigation of picea abies. Eng. Fract. Mech. 68, 565–576 (2001)

    Google Scholar 

  29. Romanowicz, M., Seweryn, A.: Verification of a non-local stress criterion for mixed mode fracture in wood. Eng. Fract. Mech. 75(10), 3141–3160 (2008)

    Google Scholar 

  30. Anaraki, A.G., Fakoor, M.: General mixed mode I/II fracture criterion for wood considering T-stress effects. Mater. Des. 31(9), 4461–4469 (2010)

    Google Scholar 

  31. Anaraki, A.G., Fakoor, M.: Mixed mode fracture criterion for wood based on a reinforcement microcrack damage model. Mater. Sci. Eng. A 527(27), 7184–7191 (2010)

    Google Scholar 

  32. Anaraki, A.G., Fakoor, M.: A new mixed-mode fracture criterion for orthotropic materials, based on strength properties. J. Strain Anal. Eng. 46(1), 33–44 (2011)

    Google Scholar 

  33. Fakoor, M., Khansari, N.M.: Mixed mode I/II fracture criterion for orthotropic materials based on damage zone properties. Eng. Fract. Mech. 153, 407–420 (2016)

    Google Scholar 

  34. Daneshjoo, Z., Shokrieh, M.M., Fakoor, M., Alderliesten, R.C.: A new mixed mode I/ II failure criterion for laminated composites considering fracture process zone. Theor. Appl. Fract. Mech. 98, 48–58 (2018)

    Google Scholar 

  35. Bradley, W.L., Cohen, R.N.: Matrix Deformation and Fracture in Graphite-reinforced Epoxies. ASTM International (1985)

  36. Hibbs, M.F., Bradley, W.L.: Correlations between Micromechanical Failure Processes and the Delamination Toughness of Graphite/epoxy Systems. ASTM International (1987)

  37. Corleto, C., Bradley, W.L.: Correspondence between stress fields and damage zones ahead of crack tip of composites under mode I and mode II delamination. Proc. Sixth Int. Conf. Comp. Mater. 3, 378–387 (1993)

    Google Scholar 

  38. Corleto, C., Bradley, W.L.: Mode II delamination fracture toughness of unidirectional graphite/epoxy composites. Compos. Mater. Fatigue Fract. 2, 201–221 (1989)

    Google Scholar 

  39. Russell, A.J.: Micromechanisms of interlaminar fracture and fatigue. Polym. Compos. 8, 342–351 (1987)

    Google Scholar 

  40. Jordan, W.M, Bradley, W.L.: Micromechanisms of Fracture in Toughened Graphite-epoxy Laminates. ASTM International (1987)

  41. Amaral, L., Alderliesten, R.C., Benedictus, R.: Towards a physics-based relationship for crack growth under different loading modes. Eng. Fract. Mech. 195, 222–241 (2018)

    Google Scholar 

  42. Amaral, L., Alderliesten, R.C., Benedictus, R.: Understanding mixed-mode cyclic fatigue delamination growth in unidirectional composites: an experimental approach. Eng. Fract. Mech. 180, 161–178 (2017)

    Google Scholar 

  43. Daneshjoo, Z., Amaral, L., Alderliesten, R.C., Shokrieh, M.M., Fakoor, M.: Development of a physics-based theory for mixed mode I/II delamination onset in orthotropic laminates. Theor. Appl. Fract. Mech. 103, 102303 (2019)

    Google Scholar 

  44. Daneshjoo, Z., Shokrieh, M.M., Fakoor, M., Alderliesten, R.C., Zarouchas, D.S.: Physics of delamination onset in unidirectional composite laminates under mixed-mode I/II loading. Eng. Fract. Mech. 211, 82–98 (2019)

    Google Scholar 

  45. Daneshjoo, Z.: A novel approximate method for determining mixed mode I/II bridging law of laminated composites. J. Sci. Technol. Compos. 8(4), 1836–1848 (2022)

    Google Scholar 

  46. Sih, G.C., Paris, P.C., Irwin, G.R.: On cracks in rectilinearly anisotropic bodies. Int. J. Fract. Mech. 1(3), 189–203 (1965)

    Google Scholar 

  47. Allegri, G., Scarpa, F.L.: On the asymptotic crack-tip stress fields in nonlocal orthotropic elasticity. Int. J. Sol. Struct. 51(2), 504–515 (2014)

    Google Scholar 

  48. Barrett, J.D., Foschi, R.O.: Mode II stress-intensity factors for cracked wood beams. Eng. Fract. Mech. 9(2), 371–378 (1977)

    Google Scholar 

  49. de Moura, M.F.S.F., Silva, M.A.L., Morais, J.J.L., de Morais, A.B., Lousada, J.L.: A new methodology for the characterization of mode II fracture of Pinus pinaster wood. In: 5th International Conference on Mechanics and Materials in Design, Porto-Portugal, pp 24–26 (2006)

  50. de Moura, M.F.S.F., Silva, M.A.L., de Morais, A.B., Morais, J.J.L.: Equivalent crack based mode II fracture characterization of wood. Eng. Fract. Mech. 73(8), 978–993 (2006)

    Google Scholar 

  51. Sih G.C.: Mechanics of Fracture Initiation and Propagation: Surface and Volume Energy Density Applied as Failure Criterion. Springer: London pp 101 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Daneshjoo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daneshjoo, Z., Fakoor, M. Appropriate fitted point on fracture limit curve of orthotropic materials to include the fracture process zone effects on mixed-mode I/II fracture criterion. Acta Mech 234, 1489–1502 (2023). https://doi.org/10.1007/s00707-022-03468-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03468-0

Navigation