Skip to main content
Log in

Non-symmetric Transition Probability in Generalized Qubit Models

  • Research
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The quantum mechanical transition probability is symmetric. A probabilistically motivated and more general quantum logical definition of the transition probability was introduced in two preceding papers without postulating its symmetry, but in all the examples considered there it remains symmetric. Here we present a class of binary models where the transition probability is not symmetric, using the extreme points of the unit interval in an order unit space as quantum logic. We show that their state spaces are strictly convex smooth compact convex sets and that each such set K gives rise to a quantum logic of this class with the state space K. The transition probabilities are symmetric iff K is the unit ball in a Hilbert space. In this case, the quantum logic becomes identical with the projection lattice in a spin factor which is a special type of formally real Jordan algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

This article has no additional data.

References

  1. Alfsen, E.M., Shultz, F.W.: State spaces of operator algebras: basic theory, orientations, and C*-products. Birkhauser, Basel (2001)

    Book  Google Scholar 

  2. Alfsen, E.M., Shultz, F.W.: Geometry of state spaces of operator algebras. Birkhauser, Basel (2003)

    Book  Google Scholar 

  3. Araki, H.: On a characterization of the state space of quantum mechanics. Commun. Math. Phys. 75(1), 1–24 (1980). https://doi.org/10.1007/BF01962588

    Article  ADS  MathSciNet  Google Scholar 

  4. Barnum, H., Müller, M.P., Ududec, C.: Higher-order interference and single-system postulates characterizing quantum theory. New J. Phys. 16(12), 123029 (2014). https://doi.org/10.1088/1367-2630/16/12/123029

    Article  ADS  Google Scholar 

  5. Berdikulov, M.: Homogeneous order unit space of type \({I}_2\). Izv. Akad. Nauk UzSSR. Ser. Fiz.-Mat. Nauk, later renamed to: Uzbek Mathematical Journal, 4:8–14, (1990)

  6. Berdikulov, M., Odilov, S.: Generalized spin factors. Uzbek Math. J. 1, 10–15 (1995)

    MathSciNet  Google Scholar 

  7. Berdikulov, M.A.: The notion of a trace on order-unit spaces and the space of integrable elements. Sib. Adv. Math. 16(2), 34–42 (2006)

    MathSciNet  Google Scholar 

  8. Berdikulov, M.A.: The Banach ball property for the state space of order unit spaces. Malays. J. Math. Sci. 4(1), 77–83 (2010)

    Google Scholar 

  9. Chidume, C.: Geometric properties of Banach spaces and nonlinear iterations. Springer, London, UK (2009)

    Book  Google Scholar 

  10. Guz, W.: Event-phase-space structure: an alternative to quantum logic. J. Phy. A: Math. Gen. 13(3), 881–899 (1980). https://doi.org/10.1088/0305-4470/13/3/021

    Article  ADS  MathSciNet  Google Scholar 

  11. Guz, W.: A non-symmetric transition probability in quantum mechanics. Rep. Math. Phys. 17(3), 385–400 (1980). https://doi.org/10.1016/0034-4877(80)90006-3

    Article  ADS  MathSciNet  Google Scholar 

  12. Hanche-Olsen, H., Størmer, E.: Jordan operator algebras. Pitman, Boston, MA (1984)

    Google Scholar 

  13. Köthe, G.: Topological vector spaces I. Springer, New York, NY (1969)

    Google Scholar 

  14. Lowdenslager, D.B.: On postulates for general quantum mechanics. Proceed. Am. Math. Soc. 8(1), 88–91 (1957). https://doi.org/10.2307/2032817

    Article  MathSciNet  Google Scholar 

  15. Mielnik, B.: Geometry of quantum states. Commun. Math. Phys. 9(1), 55–80 (1968). https://doi.org/10.1007/BF01654032

    Article  ADS  MathSciNet  Google Scholar 

  16. Mielnik, B.: Theory of filters. Commun. Math. Phys. 15(1), 1–46 (1969). https://doi.org/10.1007/BF01645423

    Article  ADS  MathSciNet  Google Scholar 

  17. Niestegge, G.: Quantum probability’s algebraic origin. Entropy 22(11), 1196 (2020). https://doi.org/10.3390/e22111196

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  18. Niestegge, G.: A simple and quantum-mechanically motivated characterization of the formally real Jordan algebras. Proceed. Royal Soc. A 476(2233), 20190604 (2020). https://doi.org/10.1098/rspa.2019.0604

    Article  ADS  MathSciNet  Google Scholar 

  19. Niestegge, G.: A generic approach to the quantum mechanical transition probability. Proceed. Royal Soc. A 478(2260), 20210821 (2022). https://doi.org/10.1098/rspa.2021.0821

    Article  ADS  MathSciNet  Google Scholar 

  20. Segal, I.E.: Postulates for general quantum mechanics. Annals Math. 48(4), 930–948 (1947). https://doi.org/10.2307/1969387

    Article  MathSciNet  Google Scholar 

  21. Sherman, S.: On Segal’s postulates for general quantum mechanics. Annals Math. 64(3), 593–601 (1956). https://doi.org/10.2307/1969605

    Article  MathSciNet  Google Scholar 

  22. Wootters, W.K.: Quantum mechanics without probability amplitudes. Found. Phys. 16(4), 391–405 (1986). https://doi.org/10.1007/BF01882696

    Article  ADS  MathSciNet  Google Scholar 

  23. Wootters, W.K.: Local accessibility of quantum states. In: Zurek, W.H. (ed.) Complexity, entropy and the physics of information, pp. 39–46. Addison-Wesley, Boston, MA (1990)

    Google Scholar 

Download references

Funding

No funding has been received for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Niestegge.

Ethics declarations

Conflict of interest

The author declares he has no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niestegge, G. Non-symmetric Transition Probability in Generalized Qubit Models. Found Phys 54, 9 (2024). https://doi.org/10.1007/s10701-023-00744-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00744-4

Keywords

Navigation