Skip to main content
Log in

Evading Quantum Mechanics à la Sudarshan: Quantum-Mechanics-Free Subsystem as a Realization of Koopman-von Neumann Mechanics

  • Brief Report
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Tsang and Caves suggested the idea of a quantum-mechanics-free subsystem in 2012. We contend that Sudarshan’s viewpoint on Koopman-von Neumann mechanics is realized in the quantum-mechanics-free subsystem. Since quantum-mechanics-free subsystems are being experimentally realized, Koopman-von Neumann mechanics is essentially transformed into an engineering science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. I am tempted to recall here the maxim quoted in [6] and attributed to Sidney Coleman: “The career of a young theoretical physicist consists of treating the harmonic oscillator in ever-increasing levels of abstraction."

References

  1. Tsang, M., Caves, C.M.: Evading quantum mechanics: engineering a classical subsystem within a quantum environment. Phys. Rev. X 2, 031016 (2012). https://doi.org/10.1103/PhysRevX.2.031016

    Article  Google Scholar 

  2. Koopman, B.O.: Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. USA 17(5), 315–318 (1931). https://doi.org/10.1073/pnas.17.5.315

    Article  ADS  MATH  Google Scholar 

  3. Neumann, J.: Zur operatorenmethode in der klassischen mechanik. Ann. Math. 33(3), 587–642 (1932). https://doi.org/10.2307/1968537

    Article  MathSciNet  MATH  Google Scholar 

  4. Sudarshan, E.C.G.: Interaction between classical and quantum systems and the measurement of quantum observables. Pramana 6(3), 117–126 (1976). https://doi.org/10.1007/BF02847120

    Article  ADS  Google Scholar 

  5. Sherry, T.N., Sudarshan, E.C.G.: Interaction between classical and quantum systems: a new approach to quantum measurement II. Theoretical considerations. Phys. Rev. D 20, 857–868 (1979). https://doi.org/10.1103/PhysRevD.20.857

    Article  ADS  Google Scholar 

  6. Zhang, P., Zhao, Q., Horvathy, P.A.: Gravitational waves and conformal time transformations. Ann. Phys. 440, 168833 (2022). https://doi.org/10.1016/j.aop.2022.168833

    Article  MathSciNet  MATH  Google Scholar 

  7. Kohler, J., Gerber, J.A., Dowd, E., Stamper-Kurn, D.M.: Negative-mass instability of the spin and motion of an atomic gas driven by optical cavity backaction. Phys. Rev. Lett. 120, 013601 (2018) https://doi.org/10.1103/PhysRevLett.120.013601

    Article  ADS  Google Scholar 

  8. Gross, C., Strumia, A., Teresi, D., Zirilli, M.(2021) Is negative kinetic energy metastable? .Phys. Rev. D . 103(11): 115025. https://doi.org/10.1103/PhysRevD.103.115025

    Article  ADS  MathSciNet  Google Scholar 

  9. Møller, C.B., Thomas, R.A., Vasilakis, G., Zeuthen, E., Tsaturyan, Y., Balabas, M., Jensen, K., Schliesser, A., Hammerer, K., Polzik, E.S.: Quantum back-action-evading measurement of motion in a negative mass reference frame. Nature 547(7662), 191–195 (2017). https://doi.org/10.1038/nature22980

    Article  ADS  Google Scholar 

  10. Lépinay, L.M., Ockeloen-Korppi, C.F., Woolley, M.J., Sillanpää, M.A.: Quantum mechanics–free subsystem with mechanical oscillators. Science 372(6542), 625–629 (2021). https://doi.org/10.1126/science.abf5389

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Ockeloen-Korppi, C.F., Damskägg, E., Pirkkalainen, J.-M., Clerk, A.A., Woolley, M.J., Sillanpää, M.A.: Quantum backaction evading measurement of collective mechanical modes. Phys. Rev. Lett. 117, 140401 (2016). https://doi.org/10.1103/PhysRevLett.117.140401

    Article  ADS  Google Scholar 

  12. Mauro, D.: Topics in Koopman-von Neumann Theory (2003). https://doi.org/10.48550/arXiv.quant-ph/0301172

  13. Chashchina, O.I., Sen, A., Silagadze, Z.K.: On deformations of classical mechanics due to Planck-scale physics. Int. J. Mod. Phys. D 29(10), 2050070 (2020). https://doi.org/10.1142/S0218271820500704

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bondar, D.I., Cabrera, R., Lompay, R.R., Ivanov, M.Y., Rabitz, H.A.: Operational dynamic modeling transcending quantum and classical mechanics. Phys. Rev. Lett. 109, 190403 (2012). https://doi.org/10.1103/PhysRevLett.109.190403

    Article  ADS  Google Scholar 

  15. Sen, A., Parida, B.K., Dhasmana, S., Silagadze, Z.K.: Eisenhart lift of Koopman-von Neumann mechanics. J. Geom. Phys. 185, 104732 (2023). https://doi.org/10.1016/j.geomphys.2022.104732

    Article  MathSciNet  MATH  Google Scholar 

  16. Zurek, W.H.: Environment induced superselection rules. Phys. Rev. D 26, 1862–1880 (1982). https://doi.org/10.1103/PhysRevD.26.1862

    Article  ADS  MathSciNet  Google Scholar 

  17. McCaul, G., Zhdanov, D.V., Bondar, D.I.: The wave operator representation of quantum and classical dynamics (2023). https://doi.org/10.48550/arXiv.2302.13208

  18. Morgan, P.: An algebraic approach to Koopman classical mechanics. Ann. Phys. 414, 168090 (2020). https://doi.org/10.1016/j.aop.2020.168090

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zurab K. Silagadze.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silagadze, Z.K. Evading Quantum Mechanics à la Sudarshan: Quantum-Mechanics-Free Subsystem as a Realization of Koopman-von Neumann Mechanics. Found Phys 53, 92 (2023). https://doi.org/10.1007/s10701-023-00734-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00734-6

Keywords

Navigation