Skip to main content
Log in

Black Hole Entropy from Non-dirichlet Sectors, and a Bounce Solution

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The relevance of gravitational boundary degrees of freedom and their dynamics in gravity quantization and black hole information has been explored in a series of recent works. In this work we further progress by focusing keenly on the genuine gravitational boundary degrees of freedom as the origin of black hole entropy. Wald’s entropy formula is scrutinized, and the reason that Wald’s formula correctly captures the entropy of a black hole examined. Afterwards, limitations of Wald’s method are discussed; a coherent view of entropy based on boundary dynamics is presented. The discrepancy observed in the literature between holographic and Wald’s entropies is addressed. We generalize the entropy definition so as to handle a time-dependent black hole. Large gauge symmetry plays a pivotal role. Non-Dirichlet boundary conditions and gravitational analogues of Coleman-De Luccia bounce solutions are central in identifying the microstates and differentiating the origins of entropies associated with different classes of solutions. The result in the present work leads to a view that black hole entropy is entanglement entropy in a thermodynamic setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The same name,“bounce,” is used for the “Lorentzian bounce solutions” in the gravitational context [10,11,12,13,14,15,16]. The main conceptual difference of our view is the instontonic physics aspect of a CdL bounce solution.

  2. For how the worldvolume theory manifests, see sect. 3.3 of [5].

  3. In this work we use the setup only at a conceptual level. See [25] for a recent analysis in which BHI was studied by employing the setup.

  4. In some of the comments, replacing LGS by asymptotic symmetry would be more appropriate; we will not be concerned with this distinction.

  5. In [8] a simplistic gravitational bounce solution based on a shock wave was constructed, postponing construction of a more realistic solution. In fact, the construction should be possible by following [35] of which we have become aware recently.

  6. Related discussions were presented in the earlier works, such as [6, 8]. It is, however, the discussion around Eqs. (5 and 6) below that most clearly and explicitly “pins the issue down.”

  7. In a Hartle-Hawking vacuum, for instance, the boundary degrees of freedom are excited. Since a Dirichlet boundary condition was always assumed, this raises a question on internal consistency of the analysis.

  8. Indeed it is well known that it is Unruh vacuum that describes a decaying BH. The Unruh vacuum was obtained by carefully conducting perturbative analysis around a collapsing solution. Although it shuold be possible to consider a bounce solution associated with decay of Unruh vacuum, the analysis will enevitably be more complicated. To some degree, the simplification involved is analogous to the one achieved by examining an Unruh effect, instead of Unruh vacuum, for BH decay.

  9. This is so in the component notation. In the coordinate-free notation, tensor types are preserved both by Lie and covariant derivatives (but not by a covariant differential) [47].

  10. Another way to see this is through a path integral: the measure should ultimately be over the physical states, which have support on the boundary [40].

  11. Strictly speaking, we believe that the degrees of freedom here should include those within the stretched horizon.

  12. The singularity at the EH is usually referred to as a ‘coordinate singularity.’ All this means is that it is not a curvature singularity. To our view the term coordinate singularity is misleading at the quantum level in that it gives an impression that the singularity is not physical. If, for instance, a non-smooth EH turns out to be real, which we anticipate, the singularity will be very physical, though not a curvature singularity.

  13. The relevance of the EH in entropy computation is long known in other methods, such as those of [55, 56]. In the present framework both the EH and asymptotic boundary play roles: LGS is a symmetry associated with the boundary, whereas the nonzero contributions come from the EH.

  14. In general, this is not strictly true since \(\sqrt{-g}\) is a tensor density. However, with \(\nabla _\mu \xi ^\mu =0\), the quantities under consideration do transform as scalars.

  15. Although the original Wald’s definition requires the presence of a Killing vector, the charge was also given in subsequent works by an expression based on a functional derivative with respect to the Riemann tensor. The present result implies that a formal entropy calculation based on such a definition will not reproduce the entropy based on an Euclidean action.

References

  1. Hawking, S. W.: Particle Creation by Black Holes, Commun. Math. Phys. 43, 199 (1975) Erratum: [Commun. Math. Phys. 46, 206 (1976)]. https://doi.org/10.1007/BF02345020,https://doi.org/10.1007/BF01608497

  2. Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460–2473 (1976). https://doi.org/10.1103/PhysRevD.14.2460

    Article  ADS  MathSciNet  Google Scholar 

  3. Buoninfante, L., Di Filippo, F., Mukohyama, S.: On the assumptions leading to the information loss paradox. J. High Energy Phys. 2021(10), 1–26 (2021). https://doi.org/10.1007/JHEP10(2021)081

    Article  MathSciNet  MATH  Google Scholar 

  4. Solodukhin, S.N.: Entanglement entropy of black holes. Living Rev. Rel. 14, 8 (2011). https://doi.org/10.12942/lrr-2011-8

    Article  MATH  Google Scholar 

  5. Hatefi, E., Nurmagambetov, A.J., Park, I.Y.: ADM reduction of IIB on \(mathcal H ^{p, q}\) to dS braneworld. JHEP 04, 170 (2013). https://doi.org/10.1007/JHEP04(2013)170

    Article  ADS  MATH  Google Scholar 

  6. Park, I.Y.: Foliation-based quantization and black hole information. Class. Quant. Grav. 34(24), 245005 (2017). https://doi.org/10.1088/1361-6382/aa9602

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Park, I.Y.: Boundary dynamics in gravitational theories. JHEP 07, 128 (2019). https://doi.org/10.1007/JHEP07(2019)128

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Park, I.Y.: Black hole evolution in a quantum-gravitational framework. PTEP 2021(6), 063B03 (2021). https://doi.org/10.1093/ptep/ptab045

    Article  MathSciNet  MATH  Google Scholar 

  9. Coleman, S.R., De Luccia, F.: Gravitational effects on and of vacuum decay. Phys. Rev. D 21, 3305 (1980). https://doi.org/10.1103/PhysRevD.21.3305

    Article  ADS  MathSciNet  Google Scholar 

  10. Ambrus, M., Hajicek, P.: Quantum superposition principle and gravitational collapse: scattering times for spherical shells. Phys. Rev. D 72, 064025 (2005). https://doi.org/10.1103/PhysRevD.72.064025

    Article  ADS  MathSciNet  Google Scholar 

  11. Haggard, H.M., Rovelli, C.: Quantum-gravity effects outside the horizon spark black to white hole tunneling. Phys. Rev. D 92(10), 104020 (2015). https://doi.org/10.1103/PhysRevD.92.104020

    Article  ADS  MathSciNet  Google Scholar 

  12. Christodoulou, M., Rovelli, C., Speziale, S., Vilensky, I.: Planck star tunneling time: an astrophysically relevant observable from background-free quantum gravity. Phys. Rev. D 94(8), 084035 (2016). https://doi.org/10.1103/PhysRevD.94.084035

    Article  ADS  MathSciNet  Google Scholar 

  13. Bianchi, E., Christodoulou, M., D’Ambrosio, F., Haggard, H.M., Rovelli, C.: White holes as remnants: a surprising scenario for the end of a black hole. Class. Quant. Grav. 35(22), 225003 (2018). https://doi.org/10.1088/1361-6382/aae550

    Article  ADS  MathSciNet  Google Scholar 

  14. Ben, Achour J., Uzan, J.P.: Bouncing compact objects. Part II: effective theory of a pulsating planck star. Phys. Rev. D 102, 124041 (2020). https://doi.org/10.1103/PhysRevD.102.124041

    Article  ADS  MathSciNet  Google Scholar 

  15. Ben Achour, J., Brahma, S., Mukohyama, S., Uzan, J.P.: Towards consistent black-to-white hole bounces from matter collapse. JCAP 09, 020 (2020). https://doi.org/10.1088/1475-7516/2020/09/020

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Malafarina, D.: Classical collapse to black holes and quantum bounces: a review. Universe 3(2), 48 (2017). https://doi.org/10.3390/universe3020048

    Article  ADS  Google Scholar 

  17. Park, I.Y.: Fundamental versus solitonic description of D3-branes. Phys. Lett. B 468, 213–218 (1999). https://doi.org/10.1016/S0370-2693(99)01216-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Higuchi, A.: Quantum linearization instabilities of de sitter space-time 1. Class. Quant. Grav. 8, 1961–1981 (1991). https://doi.org/10.1088/0264-9381/8/11/009

    Article  ADS  MathSciNet  Google Scholar 

  19. Page, D.N.: Information in black hole radiation. Phys. Rev. Lett. 71, 3743–3746 (1993). https://doi.org/10.1103/PhysRevLett.71.3743

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kay, B.S.: Matter-gravity entanglement entropy and the information loss puzzle. High Energy Phys Theory (2022). https://doi.org/10.48550/arXiv.2206.07445

    Article  Google Scholar 

  21. Kay, B.S.: Entropy defined, entropy increase and decoherence understood, and some black hole puzzles solved. High Energy Phys Theory (1998). https://doi.org/10.48550/arXiv.hep-th/980217

    Article  Google Scholar 

  22. Kay, B.S.: Decoherence of macroscopic closed systems within Newtonian quantum gravity. Class. Quant. Grav. 15, L89–L98 (1998). https://doi.org/10.1088/0264-9381/15/12/003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Kay, B.S.: Modern foundations for thermodynamics and the stringy limit of black hole equilibria. High Energy Phys Theory (2012). https://doi.org/10.48550/arXiv.1209.5110

    Article  Google Scholar 

  24. Kay, B.S.: On the origin of thermality. Stat. Mech. (2012). https://doi.org/10.48550/arXiv.1209.5215

    Article  Google Scholar 

  25. Saini, A., Stojkovic, D.: Radiation from a collapsing object is manifestly unitary. Phys. Rev. Lett. 114(11), 111301 (2015). https://doi.org/10.1103/PhysRevLett.114.11130

    Article  ADS  Google Scholar 

  26. Wald, R.M.: Black hole entropy is the noether charge. Phys. Rev. D 48(8), R3427–R3431 (1993). https://doi.org/10.1103/PhysRevD.48.R3427

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Gibbons, G.W., Hawking, S.W.: Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 2752–2756 (1977). https://doi.org/10.1103/PhysRevD.15.2752

    Article  ADS  Google Scholar 

  28. Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? JHEP 02, 062 (2013). https://doi.org/10.1007/JHEP02(2013)062

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Hung, L.Y., Myers, R.C., Smolkin, M.: On holographic entanglement entropy and higher curvature gravity. JHEP 04, 025 (2011). https://doi.org/10.1007/JHEP04(2011)025

    Article  ADS  Google Scholar 

  30. Astaneh, A.F., Patrushev, A., Solodukhin, S.N.: Entropy vs gravitational action: do total derivatives matter? High Energy Phys. Theory (2014). https://doi.org/10.48550/arXiv.1411.0926

    Article  Google Scholar 

  31. Faraji Astaneh, A., Patrushev, A., Solodukhin, S.N.: Entropy discrepancy and total derivatives in trace anomaly. Phys. Lett. B 751, 227–232 (2015). https://doi.org/10.1016/j.physletb.2015.10.036

    Article  ADS  Google Scholar 

  32. Faraji Astaneh, A., Solodukhin, S.N.: The wald entropy and 6d conformal anomaly. Phys. Lett. B 749, 272–277 (2015). https://doi.org/10.1016/j.physletb.2015.07.077

    Article  ADS  MATH  Google Scholar 

  33. Park, I.Y.: Hypersurface foliation approach to renormalization of ADM formulation of gravity. Eur. Phys. J. C 75(9), 459 (2015). https://doi.org/10.1140/epjc/s10052-015-3660-x

    Article  ADS  Google Scholar 

  34. Park, I.: Foliation-based approach to quantum gravity and applications to astrophysics. Universe 5(3), 71 (2019). https://doi.org/10.3390/universe5030071

    Article  ADS  Google Scholar 

  35. Burda, P., Gregory, R., Moss, I.: Vacuum metastability with black holes. JHEP 08, 114 (2015). https://doi.org/10.1007/JHEP08(2015)114

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Braunstein, S.L., Pirandola, S., Życzkowski, K.: Better late than never: information retrieval from black holes. Phys. Rev. Lett. 110(10), 101301 (2013). https://doi.org/10.1103/PhysRevLett.110.101301

    Article  ADS  Google Scholar 

  37. Mathur, S.D.: The information paradox: a pedagogical introduction. Class. Quant. Grav. 26, 224001 (2009). https://doi.org/10.1088/0264-9381/26/22/224001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Nurmagambetov, A.J., Park, I.Y.: Quantum-induced trans-Planckian energy near horizon. JHEP 05, 167 (2018). https://doi.org/10.1007/JHEP05(2018)167

    Article  ADS  MATH  Google Scholar 

  39. Nurmagambetov, A.J., Park, I.Y.: Quantum-gravitational trans-Planckian radiation by a rotating black hole. Fortsch. Phys. 69, 10 (2021). https://doi.org/10.1002/prop.202100064

    Article  MathSciNet  Google Scholar 

  40. Park, I.Y.: Lagrangian constraints and renormalization of 4D gravity. JHEP 04, 053 (2015). https://doi.org/10.1007/JHEP04(2015)053

    Article  ADS  MathSciNet  Google Scholar 

  41. Park, I.Y.: One-loop renormalization of a gravity-scalar system. Eur. Phys. J. C 77(5), 337 (2017). https://doi.org/10.1140/epjc/s10052-017-4896-4

    Article  ADS  Google Scholar 

  42. Park, I.Y.: Revisit of renormalization of Einstein-Maxwell theory at one-loop. PTEP 2021(1), 013B03 (2021). https://doi.org/10.1093/ptep/ptaa167

    Article  MathSciNet  MATH  Google Scholar 

  43. Nishioka, T., Ryu, S., Takayanagi, T.: Holographic entanglement entropy: an overview. J. Phys. A 42, 504008 (2009). https://doi.org/10.1088/1751-8113/42/50/504008

    Article  MathSciNet  MATH  Google Scholar 

  44. Azeyanagi, T., Compere, G., Ogawa, N., Tachikawa, Y., Terashima, S.: Higher-derivative corrections to the asymptotic virasoro symmetry of 4d Extremal black holes. Prog. Theor. Phys. 122, 355–384 (2009). https://doi.org/10.1143/PTP.122.355

    Article  ADS  MATH  Google Scholar 

  45. Liu, H.S., Lu, H.: A note on Kerr/CFT and Wald entropy discrepancy in high derivative gravities. JHEP 07, 213 (2021). https://doi.org/10.1007/JHEP07(2021)213

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Ma, L., Pang, Y., Lu, H.: Improved wald formalism and first law of dyonic black strings with mixed Chern-Simons terms. J. High Energy Phys. 2022(10), 1–25 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Interscience Publisher, Hoboken (1963)

    MATH  Google Scholar 

  48. Krishnan, C., Kumar, K.V.P., Raju, A.: An alternative path integral for quantum gravity. JHEP 10, 043 (2016). https://doi.org/10.1007/JHEP10(2016)043

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Sakurai, J.J.: Modern Quantum Mechanics. The Benjamin/Cummings Publishing Company, San Francisco (1985)

    Google Scholar 

  50. Hawking, S.W., Horowitz, G.T.: The gravitational Hamiltonian, action, entropy and surface terms. Class. Quant. Grav. 13, 1487–1498 (1996). https://doi.org/10.1088/0264-9381/13/6/017

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Kabat, D.N.: Black hole entropy and entropy of entanglement. Nucl. Phys. B 453, 281–299 (1995). https://doi.org/10.1016/0550-3213(95)00443-V

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Solodukhin, S.N.: Newton constant, contact terms and entropy. Phys. Rev. D 91(8), 084028 (2015). https://doi.org/10.1103/PhysRevD.91.084028

    Article  ADS  MathSciNet  Google Scholar 

  53. Poisson, E.: A relativists’ toolkit, Cambridge (2004)

  54. Padmanabhan, T.: Thermodynamical aspects of gravity: new insights. Rept. Prog. Phys. 73, 046901 (2010). https://doi.org/10.1088/0034-4885/73/4/046901

    Article  ADS  Google Scholar 

  55. Rovelli, C.: Black hole entropy from loop quantum gravity. Phys. Rev. Lett. 77, 3288–3291 (1996). https://doi.org/10.1103/PhysRevLett.77.3288

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Solodukhin, S.N.: Conformal description of horizon’s states. Phys. Lett. B 454, 213–222 (1999). https://doi.org/10.1016/S0370-2693(99)00398-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman and Company, New York (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Y. Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, I.Y. Black Hole Entropy from Non-dirichlet Sectors, and a Bounce Solution. Found Phys 53, 74 (2023). https://doi.org/10.1007/s10701-023-00719-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00719-5

Navigation