Skip to main content
Log in

The Non-vanishing Imprint of Gravitational Waves as the Result of Its Nonlinear Evolution in Space

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

This paper focuses on the nonlinear self-interaction of gravitational waves and explores its impact on the spectrum of the resulting gravitational wave. While many authors primarily investigate the nonlinear effects within the framework of "gravitational memory," we take a different approach by conducting a comprehensive analysis of harmonic generation. Theoretical analysis indicates that higher harmonics do not possess suitable conditions for energy accumulation. However, our study presents intriguing evidence supporting the concept of "nonlinear gravitational memory": the conversion and accumulation of gravitational wave energy into a persistent metric deformation in the background space (specifically referred here to as zero harmonics). In simpler terms, a wave leaves a lasting imprint on the background space, even after the gravitational pulse subsides. Furthermore, our study estimates the significance of this effect and demonstrates that it should not be disregarded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Note that for the new-generated static field, we cannot accept \(H^{3(0)}_3 = -H^{2(0)}_2\).

  2. The suggested integration can introduce some hidden problems, but it also provides a means to avoid them. Indeed, below we see that find a solution to the system of equations without using all equations. Thus, this raises the question of whether the rest equations are also satisfied by this solution. The \(\theta \)-dependence, or the approximations obtained from the integration, can help resolve the problem.)

  3. However, finding such a solution is a much more complicated process, while higher modes are taken into account.

  4. Here and below, we use the "@" symbol as a delimiter in expressions where the absence of a separator would interfere with visual perception. By this choice, we avoid using the comma "," which could lead to confusion, namely, mistaking it with the symbol for the derivative.

  5. There are numerous potential sources that satisfy this requirement, and to be meticulous, we have to restrict ourselves to such sources.

  6. Note that at the distance of the possible detection by LIGO \(r \sim 1.97*10^{17}km\), the amplitude \(H_{GW_r} \sim 10^{-24}\), i.e., weaker than LIGO’s detection level.

  7. Here, we will not delve into the problem of energy conservation in General Relativity, assuming r is large enough.

  8. About gravitational analog of the Poynting vector see, e.g., [50]

  9. To justify this approach, it is sufficient to divide the frequency interval into several sub-intervals and apply the mean value theorem to the energy spectrum within each sub-interval.

  10. We treat the space as the free one, otherwise, the energy of the radiated gravitational wave would be partly absorbed by different objects.

  11. Actually, this parameter is under discussion today.

  12. Note, that the expected curvature-radius of the front of the PGW is so enormous that the wave can be treated as a plane one in a local enough space area.

  13. Notes about the complex representation of the \(h-\)waves: We deal in this study with sufficiently bulk relations, and, therefore, use any opportunity not to further complicate them. We adopt the most straightforward representation \(\mathbf {h = H}e^{\mathbf {k\cdot x}}\) for narrow-spectrum gravitational waves, keeping the amplitude slowly dependent on space-time variables. Since we analyze the behavior of the new harmonics separately (specifically, only the zero one), the presence of nonlinear terms does not insert new difficulties. It is sufficient to write \(h^{*\alpha }_{\beta }h^{\alpha 1}_{\beta 1}\) and \(h^{\alpha }_{\beta }\frac{\partial h^{*\alpha 1}_{\beta 1}}{\partial x^\gamma }\) in the quadratic terms (the superscript \(^*\) denotes the complex conjugate function). To separate the zero harmonic product, we simply omit the imaginary terms.

References

  1. Isaacson, R.A.: Gravitational radiation in the limit of high frequency. ii. nonlinear terms and the effective stress tensor. Phys. Rev. 166(5), 1272 (1968)

    ADS  Google Scholar 

  2. Weiss, R.: Gravitational radiation. Rev. Mod. Phys. 71(2), S187 (1999)

    ADS  MathSciNet  Google Scholar 

  3. Christodoulou, D.: Nonlinear nature of gravitation and gravitational-wave experiments. Phys. Rev. Lett. 67(12), 1486 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Thorne, K.S.: Gravitational-wave bursts with memory: the christodoulou effect. Phys. Rev. D 45(2), 520 (1992)

    ADS  MathSciNet  Google Scholar 

  5. Wiseman, A.G., Will, C.M.: Christodoulou’s nonlinear gravitational-wave memory: Evaluation in the quadrupole approximation. Phys. Rev. D 44(10), R2945 (1991)

    ADS  MathSciNet  Google Scholar 

  6. Damour, T., Iyer, B.R.: Generation of gravitational waves: the post-newtonian spin octupole moment. Class. Quantum Gravity 11(5), 1353 (1994)

    ADS  MathSciNet  Google Scholar 

  7. Gurwich, I.: A novel approach to the nonlinear propagation of wide light beams. J. Phys. D 30(15), 2183 (1997)

    ADS  Google Scholar 

  8. Blanchet, L.: Gravitational-wave tails of tails. Class. Quantum Gravity 15(1), 113 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Mendonca, J.T., Cardoso, V.: Gravitational optics: self-phase modulation and harmonic cascades. Phys. Rev. D 66(10), 104009 (2002)

    ADS  Google Scholar 

  10. Servin, M., Marklund, M., Brodin, G., Mendonca, J.T., Cardoso, V.: Nonlinear self-interaction of plane gravitational waves. Phys. Rev. D 67(8), 087501 (2003)

    ADS  Google Scholar 

  11. Blair, D.G.: The Detection of Gravitational Waves. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  12. Ciufolini, I., Gorini, V., Moschella, U., Fré, P.: Gravitational waves. series in high energy physics. Cosmology and Gravitation. Institute of Physics Publishing (2001)

  13. Efroimsky, M.: Weak gravitation waves in vacuum and in media: Taking nonlinearity into account. Phys. Rev. D 49(12), 6512 (1994)

    ADS  MathSciNet  Google Scholar 

  14. Damour, T.: Gravitational waves and binary black holes. Ondes Gravitationnelles, Séminaire Poincaré 22, 1–51 (2016)

    Google Scholar 

  15. Du, S.M., Nishizawa, A.: Gravitational wave memory: a new approach to study modified gravity. Phys. Rev. D 94(10), 104063 (2016)

    ADS  Google Scholar 

  16. Wheeler, J.A.: Geometrodynamics, vol. 1. Academic Press, Washington, DC (1962)

    MATH  Google Scholar 

  17. Blanchet, L., Buonanno, A., Faye, G.: Third post-newtonian spin-orbit effect in the gravitational radiation flux of compact binaries. arXiv preprint arXiv:1210.0764 (2012)

  18. Blanchet, L.: Gravitational radiation from post-newtonian sources and inspiralling compact binaries. Living Rev. Relat. 17(1), 2 (2014)

    ADS  MATH  Google Scholar 

  19. Levi, M.: Effective field theories of post-newtonian gravity: a comprehensive review. Rep. Prog. Phys. 83(7), 075901 (2020)

    ADS  MathSciNet  Google Scholar 

  20. Bass, M., Franken, P.A., Ward, J.F., Weinreich, G.: Optical rectification. Phys. Rev. Lett. 9(11), 446 (1962)

    ADS  Google Scholar 

  21. Vishwakarma, R.G.: Mysteries of r ik= 0: a novel paradigm in Einstein’s theory of gravitation. Front. Phys. 9(1), 98–112 (2014)

    ADS  Google Scholar 

  22. Shen, Y.-R.: The Principles of Nonlinear Optics. Wiley, New York (1984)

    Google Scholar 

  23. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon Press, Oxford (1975)

    MATH  Google Scholar 

  24. Gourgoulhon, E., Le Tiec, A., Vincent, F.H., Warburton, N.: Gravitational waves from bodies orbiting the galactic center black hole and their detectability by lisa. Astron. Astrophys. 627, A92 (2019)

    Google Scholar 

  25. Yu Vlasov, I., Sazhina, O.S., Sementsov, V.N., Sazhin, M.V.: Binary stars as sources of monochromatic gravitational waves. Astron. Rep. 59(6), 525–541 (2015)

    ADS  Google Scholar 

  26. Alvi, K.: Approximate binary-black-hole metric. Phys. Rev. D 61(12), 124013 (2000)

    ADS  MathSciNet  Google Scholar 

  27. Gurwich, I.: Wave Propagation in Nonlinear Media. Ben-Gurion University of the Negev, Beersheba (1996)

    Google Scholar 

  28. Weisstein, E.W.: Spherical Harmonic. https://mathworld.wolfram.com/, (2004)

  29. Pinchover, Y., Rubinstein, J., et al.: An Introduction to Partial Differential Equations, vol. 10. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  30. Abood, H.J., Hussain, A.H.: Existence and uniqueness linear partial differential equations depending initial and boundary conditions. J Asian Sci. Res. 3(8), 786–799 (2013)

    Google Scholar 

  31. Thorne, K.S.: Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52(2), 299 (1980)

    ADS  MathSciNet  Google Scholar 

  32. Nyadzani, L., Razzaque, S.: Polarization of gravitational waves from binary systems. High Energy Astrophysics in Southern Africa (HEASA2018, p. 29, 2018)

  33. Flannery, B.P., Van den Heuvel, E.P.J.: On the origin of the binary pulsar psr 1913+ 16. Astron. Astrophys. 39, 61–67 (1975)

    ADS  Google Scholar 

  34. Taylor, J.H., Weisberg, J.M.: A new test of general relativity-gravitational radiation and the binary pulsar psr 1913+ 16. Astrophys. J. 253, 908–920 (1982)

    ADS  Google Scholar 

  35. Weisberg, J.M., Nice, D.J., Taylor, J.H.: Timing measurements of the relativistic binary pulsar psr b1913+ 16. Astrophys. J. 722(2), 1030 (2010)

    ADS  Google Scholar 

  36. Lorimer, D.R.: Binary and millisecond pulsars. Living Rev. Relativ. 11(1), 1–90 (2008)

    ADS  MATH  Google Scholar 

  37. Baryshev, Y.V.: Gravitational radiation of the binary pulsar psr 1913+ 16. Astrophysics 18(1), 58–61 (1982)

    ADS  Google Scholar 

  38. Spyrou, N.: Self-energy losses in the binary pulsar psr 1913+ 16. Astron. Astrophys. 174, 355 (1987)

    ADS  Google Scholar 

  39. Marck, J.-A., Lasota, J.-P.: Relativistic Gravitation and Gravitational Radiation Inclusive CD-ROM. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  40. Kokkotas, K.D.: Gravitational wave physics. Encyclopedia Phys. Sci. Technol. 7(3), 67–85 (2002)

    Google Scholar 

  41. Sosnovskiy, R.: The gravitational field energy density for symmetrical and asymmetrical systems. arXiv preprint gr-qc/0607112 (2006)

  42. Fryer, C.L., New, K.C.B.: Gravitational waves from gravitational collapse. Living Rev. Relativ. 14(1), 1–93 (2011)

    ADS  MATH  Google Scholar 

  43. Radice, D., Morozova, V., Burrows, A., Vartanyan, D., Nagakura, H.: Characterizing the gravitational wave signal from core-collapse supernovae. Astrophys. J. Lett. 876(1), L9 (2019)

    ADS  Google Scholar 

  44. Favata, M.: The gravitational-wave memory effect. Class. Quantum Gravity 27(8), 084036 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Burrows, A., Vartanyan, D.: Core-collapse supernova explosion theory. Nature 589(7840), 29–39 (2021)

    ADS  Google Scholar 

  46. Moiseenko, S.G., Bisnovatyi-Kogan, G.S.: Gravitational waves and core-collapse supernovae. Multifrequency Behaviour of High Energy Cosmic Sources-XIII. 3-8 June 2019. Palermo, p. 22, (2019)

  47. Fryer, C.L., Holz, D.E., Hughes, S.A.: Gravitational wave emission from core collapse of massive stars. Astrophys. J. 565(1), 430 (2002)

    ADS  Google Scholar 

  48. Brown, J.D., Lau, S.R., York, J.W.: Action and energy of the gravitational field. Ann. Phys. 297(2), 175–218 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Brown, J.D., Creighton, J., Mann, R.B.: Temperature, energy, and heat capacity of asymptotically anti–de sitter black holes. Phys. Rev. D 50(10), 6394 (1994)

    ADS  MathSciNet  Google Scholar 

  50. De Menezes, L.M.: Gravitational analog of the electromagnetic poynting vector. arXiv preprint gr-qc/9801095 (1998)

  51. Abdikamalov, E., Pagliaroli, G., Radice, D.: Gravitational waves from core-collapse supernovae. arXiv preprint arXiv:2010.04356 (2020)

  52. Bisnovatyi-Kogan, G.S., Moiseenko, S.G.: Gravitational waves and core-collapse supernovae. Phys. Usp. 60(8), 843 (2017)

    ADS  Google Scholar 

  53. Bisnovatyi-Kogan, G.S., Moiseenko, S.G.: Gravitational waves and core-collapse supernovae. Phys. Usp. 60(8), 843–850 (2017)

    ADS  Google Scholar 

  54. Kifonidis, K., Plewa, T., Janka, H.-T., Müller, E.: Non-spherical core collapse supernovae-i. Neutrino-driven convection, Rayleigh-Taylor instabilities, and the formation and propagation of metal clumps. Astron. Astrophys. 408(2), 621–649 (2003)

    ADS  Google Scholar 

  55. Karachentsev, I.D.: et al. Astrophys. 49, 450 (2006). Astrofizika, 49:527 (2006)

  56. Bonazzola, S., Marck, J.A.: Astrophysical sources of gravitational radiation. Annu. Rev. Nucl. Part Sci. 44(1), 655–717 (1994)

    ADS  Google Scholar 

  57. Ma, X., Hopkins, P.F., Wetzel, A.R., Kirby, E.N., Anglés-Alcázar, D., Faucher-Giguère, C.-A., Kereš, D., Quataert, E.: The structure and dynamical evolution of the stellar disc of a simulated milky way-mass galaxy. Mon. Not. R. Astron. Soc. 467(2), 2430–2444 (2017)

    ADS  Google Scholar 

  58. Giarè, W., Renzi, F.: Propagating speed of primordial gravitational waves. Phys. Rev. D 102(8), 083530 (2020)

    ADS  MathSciNet  Google Scholar 

  59. Wang, M.S.: Primordial gravitational waves from cosmic inflation. Mathematical Tripos Part III Essay, 75 (2017)

  60. Caldwell, R.R., Smith, T.L., Walker, D.G.E.: Using a primordial gravitational wave background to illuminate new physics. Phys. Rev. D 100(4), 043513 (2019)

    ADS  Google Scholar 

  61. Tsamis, N.C., Woodard, R.P.: Stochastic quantum gravitational inflation. Nucl. Phys. B 724(1–2), 295–328 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  62. Guzzetti, M.C., Bartolo, N., Liguori, M., Matarrese, S.: Gravitational waves from inflation. La Rivista del Nuovo Cimento 39(9), 399–495 (2016)

    ADS  Google Scholar 

  63. Sasaki, T., Suzuki, H.: Exact solutions of primordial gravitational waves. Prog. Theor. Exp. Phys. 11, 113E03 (2018)

    MATH  Google Scholar 

  64. Mendes, L.E., Henriques, A.B., Moorhouse, R.G.: Exact calculation of the energy density of cosmological gravitational waves. Phys. Rev. D 52(4), 2083 (1995)

    ADS  Google Scholar 

  65. Watanabe, Y., Komatsu, E.: Improved calculation of the primordial gravitational wave spectrum in the standard model. Phys. Rev. D 73(12), 123515 (2006)

    ADS  Google Scholar 

  66. Ishak, M.: Testing general relativity in cosmology. Living Rev. Relativ. 22(1), 1–204 (2019)

    ADS  Google Scholar 

  67. Tatum, E.T., et al.: Flat space cosmology as a model of penrose’s weyl curvature hypothesis and gravitational entropy. J. Mod. Phys. 9(10), 1935 (2018)

    Google Scholar 

  68. Ringwald, A., Saikawa, K., Tamarit, C.: Primordial gravitational waves in a minimal model of particle physics and cosmology. J. Cosmol. Astropart. Phys. 2021(02), 046 (2021)

    MathSciNet  MATH  Google Scholar 

  69. Grishchuk, L.P.: Discovering relic gravitational waves in cosmic microwave background radiation. In: General Relativity and John Archibald Wheeler, pp. 151–199 (Springer, New York, 2010)

  70. Beckwith, A.W., Baker, R.M.L., Jr., et al.: Value of high-frequency relic gravitational wave (hfrgw) detection to astrophysics and fabrication and utilization of the li-baker hfrgw detector. J. High Energy Phys. Gravit. Cosmol. 6(01), 103 (2020)

    ADS  Google Scholar 

  71. Campeti, P., Komatsu, E., Poletti, D., Baccigalupi, C.: Measuring the spectrum of primordial gravitational waves with cmb, pta and laser interferometers. J. Cosmol. Astropart. Phys. 2021(01), 012 (2021)

    Google Scholar 

  72. Dalianis, I., Kritos, K.: Exploring the spectral shape of gravitational waves induced by primordial scalar perturbations and connection with the primordial black hole scenarios. Phys. Rev. D 103(2), 023505 (2021)

    ADS  MathSciNet  Google Scholar 

  73. Brown, W.K.: A cosmogonical analogy between the big bang and a supernova. Specul. Sci. Technol. 4, 415–421 (1981)

    Google Scholar 

  74. Belinski, V.A., Vereshchagin, G.V.: On the cosmological gravitational waves and cosmological distances. Phys. Lett. B 778, 332–338 (2018)

    ADS  Google Scholar 

  75. Obata, I., Fujita, T.: Footprint of two-form field: statistical anisotropy in primordial gravitational waves. Phys. Rev. D 99(2), 023513 (2019)

    ADS  Google Scholar 

  76. Adams, P.J., Hellings, R.W., Zimmerman, R.L.: Inhomogeneous cosmology. iii-primordial gravitational waves and dust. Astrophys. J. 318, 1–14 (1987)

    ADS  Google Scholar 

  77. Rees, M.J.: Effects of very long wavelength primordial gravitational radiation. Mon. Not. R. Astron. Soc. 154(2), 187–195 (1971)

    ADS  Google Scholar 

  78. Diego, J.M.: Constraining the abundance of primordial black holes with gravitational lensing of gravitational waves at ligo frequencies. Phys. Rev. D 101(12), 123512 (2020)

    ADS  MathSciNet  Google Scholar 

  79. Valev, D.: Estimations of total mass and energy of the universe. arXiv preprint arXiv:1004.1035 (2010)

  80. Galtsov, D.V., Tsvetkov, V.P., Tsirulev, A.N.: The spectrum and polarization of the gravitational radiation of pulsars. Zh. Eksp. Teor. Fiz. 86, 809–818 (1984)

    ADS  Google Scholar 

  81. Gong, Y., Hou, S.: The polarizations of gravitational waves. Universe 4(8), 85 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

I like to express my gratitude to Dr. Ilya Gurwich for his help, criticism, and productive discussions.

Author information

Authors and Affiliations

Authors

Contributions

I am the single author

Corresponding author

Correspondence to Ioseph Gurwich.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The Christoffel symbols the Ricci tensor components for r-spherical waves in curved space with the spherical metric

In this Appendix, we intend to calculate the components of the nonlinear part of the Ricci tensor, i.e., the right-hand side of Eq. (3).

The general relation determining the Ricci tensor of the second-order nonlinearity is

$$\begin{aligned}{} & {} R^{(2)}_{\gamma \tau } = \frac{\partial \varGamma ^{(2)\beta }_{\gamma \tau }}{\partial x^{\beta }}-\frac{\partial \varGamma ^{(2)\beta }_{\gamma \beta }}{\partial x^{\tau }}+\varGamma ^{(0)\beta }_{\gamma \tau }\varGamma ^{(2)\eta }_{\beta \eta }+\varGamma ^{(2)\beta }_{\gamma \tau }\varGamma ^{(0)\eta }_{\beta \eta }+\varGamma ^{(1)\beta }_{\gamma \tau }\varGamma ^{(1)\eta }_{\beta \eta }-\varGamma ^{(2)\alpha }_{\gamma \beta }\varGamma ^{(0)\beta }_{\tau \alpha }\nonumber \\{} & {} \quad -\varGamma ^{(1)\alpha }_{\gamma \beta }\varGamma ^{(1)\beta }_{\tau \alpha }. \end{aligned}$$
(A-1)

Therefore, previously, we have to calculate the Chistoffel symbols of all ranks, determined by the gravitational waves of the source (in the linear approximation), \(h^{(1L),\alpha ,\beta }\).Footnote 13

Perform the proper calculations for the Christoffel symbols and the Ricci tensor components step by step.

$$\begin{aligned} \varGamma ^{(0)\beta }_{\gamma \tau }=\frac{1}{2}g^{(0)\beta \beta }\left( \frac{\partial g^{(0)}_{\beta \gamma }}{\partial x^\tau }+\frac{\partial g^{(0)}_{\beta \tau }}{\partial x^\gamma }- \frac{\partial g^{(0)}_{\gamma \tau }}{\partial x^\beta }\right) . \end{aligned}$$
(A-2)

The only nonzero derivatives of \(\mathbf {g^{(0)}}\) components (here covariant) are:

$$\begin{aligned}{} & {} \frac{\partial g^{(0)}_{11}}{\partial x^1} = -2r, \\{} & {} \frac{\partial g^{(0)}_{{33}}}{\partial x^1} = -2r\sin ^2\theta , \\{} & {} \frac{\partial g^{(0)}_{33}}{\partial x^2} = -r^2\sin (2\theta ). \end{aligned}$$

Recall that the zero-order Ricci tensor corresponds to the absence of gravitational waves and, thus, is described by the undisturbed metrics and satisfies the stationary equation \(R^{(0)}_{\alpha ,\beta }=0\). In the far zone, we have only these non-zero components. In the far zone, we have only these nonzero components

$$\begin{aligned}{} & {} \varGamma ^{(0)2}_{33 }=\sin (2\theta ),\\{} & {} \varGamma ^{(0)3}_{21}= \frac{1}{r},\\{} & {} \varGamma ^{(0)3}_{31}= \frac{1}{r}. \end{aligned}$$

For the right-hand side of the wave equation (only the components of the fundamental harmonic appear) we write

$$\begin{aligned}{} & {} \varGamma ^{(1)\beta }_{\gamma \tau }=\frac{1}{2}h^{(1L)\alpha \beta }\left( \frac{\partial g^{(0)}_{\alpha \gamma }}{\partial x^\tau }+\frac{\partial g^{(0)}_{\alpha \tau }}{\partial x^\gamma }- \frac{\partial g^{(0)}_{\gamma \tau }}{\partial x^\alpha }\right) \nonumber \\{} & {} \quad - \frac{1}{2}g^{(0)\beta \beta }\left( \frac{\partial h^{(1L)}_{\beta \gamma }}{\partial x^\tau }+\frac{\partial h^{(1L)}_{\beta \tau }}{\partial x^\gamma }- \frac{\partial h^{(1L)}_{\gamma \tau }}{\partial x^\beta }\right) . \end{aligned}$$
(A-3)

For the calculation of the Christoffel symbol components, we need to decide on the polarization of the gravitational wave in the linear approximation. Assuming the radial direction of wave propagation (relative to the well-defined center of the source), we can consider the plus (+) and cross (x) polarizations (see, for instance, [80, 81]), or (as we do), \(h_{22}=-h_{33}\), \(h_{23}=h_{32}\).

For quasi-monochromatic sources, we can assume that possible time variations of the gravitational wave amplitudes are so small that we neglect them. Thus, we have \(\frac{\partial h^{(1\,L)}_{\beta ,\gamma }}{\partial x^0}=i\omega h^{(1\,L)}_{\beta ,\gamma }\). However, when considering general or multiple sources, we need to take into account the time-dependent radiation intensity and, therefore, the amplitude dependence on \( x ^ 0 \). In this analysis, we restrict ourselves to cases where it is sufficient to consider only the first derivatives and only their linear order.

Since the \(r-\)order of the main mode of radiated waves \(\mathbf {h^{(1L)}}\) is \(O(\frac{1}{r})\) (we ignore here the higher modes, such as those in [31], the nonzero components of the first order Christoffel symbols are:

$$\begin{aligned}{} & {} \varGamma ^{(1)2}_{20}= - \frac{1}{2}g^{(0)22}\frac{\partial h^{(1L)}_{22}}{\partial x^0}= e^{i\varPsi } \frac{1}{2}\left( -i\frac{\omega }{c} H^{2(1L)}_{2} + \frac{\partial H^{2(1L)}_{2}}{\partial x^0}\right) \sim O \left( \frac{1}{r}\right) ,\\{} & {} \varGamma ^{(1)2}_{23}= \frac{1}{2}h^{(1L),32}\frac{g^{(0)}_{33}}{\partial x^2} \approx -e^{i\varPsi }\frac{1}{2}\sin (2\theta )\frac{1}{ \sin ^2{\theta }}H^{2(1L)}_3 \sim O \left( \frac{1}{r}\right) ,\\{} & {} \varGamma ^{(1)2}_{33 }= \frac{1}{2}h^{(1L)22}\frac{\partial g^{(0)}_{33}}{\partial x^2} - \frac{1}{2}g^{(0)22} \left( - \frac{\partial h^{(1L)}_{33}}{\partial x^2}\right) = -\frac{1}{2}h^{(1L)22}\frac{\partial g^{(0)}_{33}}{\partial x^2} + \frac{1}{2}g^{(0)22} \frac{\partial h^{(1L)}_{33}}{\partial x^2}\\{} & {} \quad = -\frac{1}{2}\sin (2\theta )h^{2(1L)}_2 - \frac{1}{2}\frac{\partial h^{2(1L)}_2}{\partial x^2} = - \frac{e^{\pm {i}\omega t}}{2}\left( \sin (2\theta )H^{2(1L)}_2 + \frac{\partial H^{2(1L)}_{2}}{\partial x^2}\right) \\{} & {} \quad \sim O \left( \frac{1}{r}\right) , \\{} & {} \varGamma ^{(1)3}_{20 }= - \frac{1}{2}g^{(0)33}\frac{\partial h^{(1L)}_{32}}{\partial x^0}= - \frac{1}{2}g^{(0)33}g^{(0)}_{22}\frac{\partial h^{2(1L)}_3}{\partial x^0} \\{} & {} \quad = e^{\pm {i}\omega t} \left[ \mp {i}\frac{\omega }{2c}H^{2(1L)}_{3} +\frac{\partial H^{2(1L)}_3}{\partial x^0}\right] . \end{aligned}$$

Similarly,

$$\begin{aligned}{} & {} \varGamma ^{(1)2}_{30 } =e^{i\varPsi }\left[ i\frac{\omega }{2c} H^{2(1L)}_{3} + \frac{\partial H^{(1L)}_{23}}{\partial x^0}\right] ,\\{} & {} \varGamma ^{(1)3}_{22} = \frac{2}{\sin ^2(\theta )}e^{i\varPsi }\frac{\partial H^{2(1L)}_{3}}{\partial x^2},\\{} & {} \varGamma ^{(1)3}_{32} = \frac{1}{2}e^{i\varPsi }\left[ \sin {(2\theta )}H^{2(1L)}_2-\frac{1}{\sin ^2{\theta }}\frac{\partial H^{2(1L)}_{2}}{\partial x^2}\right] . \end{aligned}$$

On the left-hand side, without knowledge about the polarization of the nonlinear product, we have to keep the general formula intact [23].

For the second order Christoffel symbols we have

$$\begin{aligned} \varGamma ^{(2)\beta }_{\gamma \tau }=\frac{1}{2}h^{(1L)\beta \eta }\left( \frac{\partial h^{(1L)}_{\eta \gamma }}{\partial x^\tau }+\frac{\partial h^{(1L)}_{\eta \tau }}{\partial x^\gamma }- \frac{\partial h^{(1L)}_{\gamma \tau }}{\partial x^\eta }\right) . \end{aligned}$$

The possibly nonzero components are

$$\begin{aligned} \varGamma ^{(2)2}_{\gamma \tau }=\frac{1}{2}h^{(1L)22}\left( \frac{\partial h^{(1L)}_{2\gamma }}{\partial x^\tau }+\frac{\partial h^{(1L)}_{2\tau }}{\partial x^\gamma }- \frac{\partial h^{(1L)}_{\gamma \tau }}{\partial x^2}\right) +\frac{1}{2}h^{(1L)23}\left( \frac{\partial h^{(1L)}_{3\gamma }}{\partial x^\tau }+\frac{\partial h^{(1L)}_{3\tau }}{\partial x^\gamma }\right) . \end{aligned}$$

In the more detailed form:

$$\begin{aligned}{} & {} \varGamma ^{(2)2}_{20 }=\frac{1}{2}h^{(1L)22}\frac{\partial h^{(1L)}_{22}}{\partial x^0} + \frac{1}{2}h^{(1L)32}\frac{\partial h^{(1L)}_{32}}{\partial x^0}\\{} & {} \quad = \frac{i\omega }{2c}e^{i\varPsi }\left[ h^{2(1L)}_{2}H^{2(1L)}_{2}+h^{3(1L)}_2H^{2(1L)}_3 \right] \\{} & {} \quad +\,\frac{e^{i\varPsi }}{2}\left[ h^{2(1L)}_3\left( \frac{\partial H^{2(1L)}_2}{\partial x^0}\right) + h^{2(1L)}_3\left( \frac{\partial H^{2(1L)}_{3}}{\partial x^0}\right) \right] \sim O \left( \frac{\omega }{c}\frac{1}{r^2}\right) .\\{} & {} \varGamma ^{(2)2}_{30 }=\frac{1}{2}h^{(1L)22}\frac{\partial h^{(1L)}_{23}}{\partial x^0} + \frac{1}{2}h^{(1L)32}\frac{\partial h^{(1L)}_{33}}{\partial x^0} =\\{} & {} \quad \frac{e^{i\varPsi }}{2}\left[ h^{2(1L)}_2\left( i\omega H^{2(1L)}_3 + \frac{\partial H^{2(1L)}_{3}}{\partial x^0}\right) - h^{2(1L)}_3\left( i\omega H^{2(1L)}_2 +\frac{\partial H^{2(1L)}_{2}}{\partial x^0}\right) \right] \\{} & {} \quad \sim O \left( \frac{\omega }{c}\frac{1}{r^2}\right) . \end{aligned}$$

Following, we get the relations:

$$\begin{aligned}{} & {} \varGamma ^{(2)2}_{21 } =\frac{i\varPsi }{2}H^{2(1L)}_2\frac{\partial h^{2(1L)}_{2}}{\partial x^1}+\frac{e^{i\varPsi }}{r}H^{2(1L)}_2h^{2(1L)}_2+\frac{e^{i\varPsi }}{2}H^{3(1L)}_2\frac{\partial h^{2(1L)}_{3}}{\partial x^1}\\{} & {} \qquad \qquad+ \frac{e^{i\varPsi }}{r}H^{3(1L)}_2h^{2(1L)}_{3} =\\{} & {} \qquad \qquad\frac{e^{i\varPsi }}{2}H^{2(1L)}_2\frac{\partial h^{2(1L)}_{2}}{\partial x^1}+\frac{e^{i\varPsi }}{r}H^{2(1L)}_2h^{2(1L)}_2+\frac{e^{i\varPsi }}{2}H^{3(1L)}_2\frac{\partial h^{2(1L)}_{3}}{\partial x^1}\\{} & {} \qquad \qquad+ \frac{e^{i\varPsi }}{r}H^{3(1L)}_2h^{2(1L)}_{3} \sim O\left( \frac{1}{r^3}\right) \approx \textbf{0},\\{} & {} \varGamma ^{(2)2}_{31} = \frac{e^{i\varPsi }}{2}h^{2(1L)}_2\frac{\partial H^{2(1L)}_{3}}{\partial x^1} + \frac{e^{i\varPsi }}{2}H^{2(1L)}_3\frac{\partial h^{3(1L)}_{3}}{\partial x^1} \\{} & {} \qquad + \frac{e^{i\varPsi }}{r}\left[ H^{2(1L)}_2h^{2(1L)}_{3} + H^{2(1L)}_3h^{3(1L)}_{3}\right] \\{} & {} \qquad \sim O\left( \frac{1}{r^3}\right) \approx \textbf{0},\\{} & {} \varGamma ^{(2)2}_{22 }=\frac{e^{i\varPsi }}{2}H^{2(1L)}_2\frac{\partial h^{2(1L)}_{2}}{\partial x^2} + e^{i\varPsi }H^{3(1L)}_2\frac{\partial h^{2(1L)}_{3}}{\partial x^2} \sim O\left( \frac{1}{r^2}\right) , \\{} & {} \varGamma ^{(2)2}_{23}=\frac{e^{i\varPsi }}{2}H^{2(1L)}_3\frac{\partial h^{3(1L)}_{3}}{\partial x^2} + \sin (2\theta )H^{2(1L)}_3h^{3(1L)}_{3} \sim O\left( \frac{1}{r^2}\right) ,\\{} & {} \varGamma ^{(2)2}_{33}=-\frac{e^{i\varPsi }}{2}H^{2(1L)}_2\left( \sin (2\theta )h^{3(1L)}_3 + \sin ^2\theta \frac{\partial h^{3(1L)}_3}{\partial x_2}\right) \sim O\left( \frac{1}{r^2}\right) . \end{aligned}$$

In the similar manner,

$$\begin{aligned}{} & {} \varGamma ^{(2)3}_{20 }=\frac{e^{i\varPsi }}{2}\left[ h^{3(1L)}_2\left( \pm {i\frac{\omega }{c}} H^{2(1L)}_{3} +\frac{\partial H^{2(1L)}_{3}}{\partial x^0}\right) \right. \\{} & {} \quad \left. + h^{3(1L)}_3\left( \pm {i\frac{\omega }{c}} H^{3(1L)}_{3} +\frac{\partial H^{3(1L)}_{3}}{\partial x^0}\right) \right] \sim O\left( \frac{\omega }{c}\frac{1}{r^2}\right) , \\{} & {} \varGamma ^{(2)3}_{30 }= \frac{e^{i\varPsi }}{2}\left[ h^{3(1L)}_3\left( \pm {i}\frac{\omega }{c} H^{3(1L)}_{3} + \frac{\partial H^{3(1L)}_{3}}{\partial x^0}\right) \right. \\{} & {} \quad \left. + h^{3(1L)}_2\left( \pm {i}\frac{\omega }{c} H^{2(1L)}_{3} + \frac{\partial H^{2(1L)}_{3}}{\partial x^0}\right) \right] \sim O\left( \frac{\omega }{c}\frac{1}{r^2}\right) , \\{} & {} \varGamma ^{(2)3}_{22}=\frac{e^{i\varPsi }}{2}H^{3(1L)}_2\frac{\partial h^{2(1L)}_{2}}{\partial x^2} + \frac{e^{\pm {i}\omega t }}{2}H^{3(1L)}_3\frac{\partial h^{3(1L)}_{2}}{\partial x^2}\\{} & {} \quad +e^{\pm {i}\omega t}\frac{\cos \theta }{\sin \theta }H^{3(1L)}_3h^{3(1L)}_{2} \sim O\left( \frac{\omega }{c}\frac{1}{r^2}\right) , \\{} & {} \varGamma ^{(2)3}_{23}= \frac{e^{i\varPsi }}{2}H^{3(1L)}_3\frac{\partial h^{3(1L)}_{3}}{\partial x^2} + e^{\pm {i}\omega t }\frac{\cos \theta }{\sin \theta }H^{3(1L)}_3h^{3(1L)}_3 \sim O\left( \frac{\omega }{c}\frac{1}{r^2}\right) , \\{} & {} \varGamma ^{(2)3}_{33}=-\frac{e^{i\varPsi }}{2}\left( H^{2(1L)}_3\frac{\partial h^{3(1L)}_{3}}{\partial x_2} + \sin (2\theta ) H^{2(1L)}_3h^{3(1L)}_{3}\right) \sim O\left( \frac{\omega }{c}\frac{1}{r^2}\right) \end{aligned}$$

Now, we calculate the components of the nonlinear (second order) Ricci tensor, i.e., the right-hand side of the differential equation Eq. (3).

Assuming a weak time dependence of the amplitudes on time we drop in the Assuming a weak time dependence of the amplitudes, we can neglect the second-time derivatives as well as the square of the first-time derivatives in the following relations.

One can observe that after integrating over \(\theta \) (taking into account that the angular dependence of the nonlinear products is not of interest), we can separate variables and represent the right-hand relations as follows:

$$\begin{aligned} R^{\alpha (20)}_{\beta } = R^{\alpha (0)T}_{\beta }(\tau = t-r/c)R^{\alpha (0)R}_{\beta }(\textbf{r}). \end{aligned}$$

However, the correctness of the integration procedure is not self-evident. It should be carefully checked during the process of solving the equations. Note also that we can assume, that the time dependence is similar for all H-components, i.e.,

$$\begin{aligned}{} & {} R^{\alpha (20)}_{\beta } = R^{(0)T}(\tau )R^{\alpha (0)R}_{\beta }(\textbf{r}). \nonumber \\{} & {} \quad R^{(2)}_{\gamma \tau } = \frac{\partial \varGamma ^{(2)\beta }_{\gamma \tau }}{\partial x^{\beta }}-\frac{\partial \varGamma ^{(2)\beta }_{\gamma \beta }}{\partial x^{\tau }}+\varGamma ^{(0)\beta }_{\gamma \tau }\varGamma ^{(2)\eta }_{\beta \eta }+\varGamma ^{(2)\beta }_{\gamma \tau }\varGamma ^{(0)\eta }_{\beta \eta }+\varGamma ^{(1)\beta }_{\gamma \tau }\varGamma ^{(1)\eta }_{\beta \eta }-\varGamma ^{(2)\alpha }_{\gamma \beta }\varGamma ^{(0)\beta }_{\tau \alpha }\nonumber \\{} & {} \quad -\varGamma ^{(1)\alpha }_{\gamma \beta }\varGamma ^{(1)\beta }_{\tau \alpha }. \end{aligned}$$
(A-4)

Using the results obtained above, we get

for \(R^{(2)}_{00}\)

$$\begin{aligned} R^{(2)}_{\gamma =0@\tau =0} = -2{\frac{\partial \varGamma ^{(2)2}_{0 2}}{\partial x^0}}-\varGamma ^{(1)2}_{02}\varGamma ^{(1)2}_{02}-2\varGamma ^{(1)3}_{02}\varGamma ^{(1)2}_{03}. \end{aligned}$$
(A-5)

Further, we develop the necessary formulas for the zero harmonic only.

For the zero harmonic, the equations for \(\mathbf {R^{(2)}}\) contain only the amplitudes \(H^{(1L)}_{\alpha \gamma }.\)

Therefore, instead of Eq. (9) we write

$$\begin{aligned} \varGamma ^{(2)\beta }_{\gamma \tau }=\frac{1}{2}H^{(1L)\alpha \beta }\left( \frac{\partial H^{(1L)}_{\alpha \gamma }}{\partial x^\tau }-\frac{\partial H^{(1L)}_{\alpha \tau }}{\partial x^\gamma }- \frac{\partial H^{(1L)}_{\gamma \tau }}{\partial x^\alpha }\right) . \end{aligned}$$
(A-6)

and obtain

$$\begin{aligned}{} & {} \varGamma ^{(2)3}_{30 }= \frac{1}{2}\left( H^{3(1L)}_3\frac{\partial H^{3(1L)}_{3}}{\partial x^0} + H^{3(1L)}_2 \frac{\partial H^{2(1L)}_{3}}{\partial x^0}\right) \\{} & {} \quad = \frac{1}{4}\left[ \frac{\partial \left( H^{3(1L)}_{3}\right) ^2}{\partial x^0} + \frac{\partial \left( H^{2(1L)}_{3}\right) ^2}{\partial x^0}\right] , \end{aligned}$$

thus,

$$\begin{aligned} \frac{\partial }{\partial x^0}\varGamma ^{(2)3}_{30 }= \frac{1}{4}\left[ \frac{\partial ^2 \left( H^{3(1L)}_{3}\right) ^2}{\partial (x^0)^2} + \frac{\partial ^2 \left( H^{2(1L)}_{3}\right) ^2}{\partial (x^0)^2}\right] . \end{aligned}$$

Let us keep meanwhile this term with the second-order time derivatives.

Finally, we find the second-order Ricci tensor components for the zero harmonics.

$$\begin{aligned}{} & {} R^{(2,0)}_{ 00} \approx -H^{2(1L)}_2\frac{\partial ^2 H^{2(1L)}_{2}}{\partial (x^0)^2} - H^{3(1L)}_2\frac{\partial ^2 H^{2(1L)}_{3}}{\partial (x^0)^2}-\varGamma ^{(1)2}_{0,2}\varGamma ^{*(1)2}_{0,2} \nonumber \\{} & {} \quad - 2\varGamma ^{(1)3}_{02}\varGamma ^{*(1)2}_{03} \sim O\left( \frac{1}{r^2}\right) , \end{aligned}$$
(A-7)

or, after inserting the proper \(\varGamma \),

$$\begin{aligned}&\mathbf {R^{(2,0)}_{ 00} =} -H^{2(1L)}_2\frac{\partial ^2 H^{2(1L)}_{2}}{\partial (x^0)^2} - \frac{1}{4}\left[ \frac{\omega ^2}{c^2} \left( H^{2(1L)}_{2}\right) ^2 + \left( \frac{\partial H^{2(1L)}_{2}}{\partial x^0}\right) ^2\right] \nonumber \\&\quad - \frac{1}{2}\left[ \frac{\omega ^2}{c^2}\left( H^{2(1L)}_{3}\right) ^2 +\left( \frac{\partial H^{2(1L)}_3}{\partial x^0}\right) ^2\right] + o\left( \frac{1}{r^2}\right) . \end{aligned}$$
(A-8)

In cases of slow-varying amplitudes of the radiated gravitational wave, one can use the approximated relation

$$\begin{aligned} \textbf{R}^{\mathbf {(2,0)}}_{\textbf{00}} \approx - \frac{1}{4}\frac{\omega ^2}{c^2} \left( H^{2(1L)}_{2}\right) ^2 - \frac{1}{2}\frac{\omega ^2}{c^2}\left( H^{2(1L)}_{3}\right) ^2 + o\left( \frac{1}{r^2}\right) . \end{aligned}$$
(A-9)

This result already justifies omitting the terms of the order \(O\left( \frac{1}{r^3}\right) \) and higher (at least, in appropriate cases).

Let us continue our calculations for other \(\mathbf {R^{(2,0)}}\) components.

$$\begin{aligned} \mathbf {R^{(2,0)}_{11}} = -\frac{\partial \varGamma ^{(2)2}_{12}}{\partial x^{1}}-\frac{\partial \varGamma ^{(2)2}_{13}}{\partial x^{1}}-\varGamma ^{(2)3}_{13}\varGamma ^{(0)3}_{13} -\varGamma ^{(2)2}_{13}\varGamma ^{(0)3}_{12}, \end{aligned}$$
(A-10)

and using the calculated \(\varGamma \)-components obtain

$$\begin{aligned} \mathbf {R^{(20)}_{10}}= -\frac{\partial \varGamma ^{(2)2}_{12}}{\partial x^0}. \end{aligned}$$
(A-11)

Supposing that \(x^0, x^1\) derivative of the amplitudes are much smaller than the corresponding derivatives of the exponent factors, we get for the zero harmonics

$$\begin{aligned} \varGamma ^{(2)2}_{12 } =\frac{1}{4}\frac{\partial (H^{2(1L)}_{2})^2}{\partial x^1}+\frac{1}{4}\frac{\partial (H^{2(1L)}_{3})^2}{\partial x^1} + \frac{1}{r}\left( H^{2(1L)}_2\right) ^2 + \frac{1}{r}H^{3(1L)}_2H^{2(1L)}_{3} \sim o\left( \frac{1}{r^3}\right) , \end{aligned}$$

therefore, we omit the term \(\frac{\partial \varGamma ^{(2)2}_{12}}{\partial x^{1}}\);

also

$$\begin{aligned} \varGamma ^{(2)2}_{13 }\sim o\left( \frac{1}{r^3}\right) , \end{aligned}$$

and thus, we obtain, finally

$$\begin{aligned} \mathbf {R^{(2)}_{11} \sim o\left( \frac{1}{r^3}\right) \approx 0}. \end{aligned}$$
(A-12)

In a similar manner we calculate

$$\begin{aligned} R^{(2)}_{10}= -\frac{1}{4}\frac{\partial }{\partial x^0}\left[ \frac{\partial (H^{2(1L)}_{2})^2}{\partial x^1}+\frac{\partial (H^{2(1L)}_{3})^2}{\partial x^1}\right] \sim o\left( \frac{1}{r^3}\right) . \end{aligned}$$
(A-13)

In comparison with \(R^{(2)}_{00}\), we can accept also

$$\begin{aligned} \mathbf {R^{(2)}_{10} \approx 0}. \end{aligned}$$
(A-14)

Pay attention that for monochromatic waves \(R^{(2,0)}_{10} = 0\) identically.

Continue the calculations.

$$\begin{aligned} \begin{aligned}&R^{(2,0)}_{\gamma =1@\tau =2} = \frac{\partial \varGamma ^{(2)\beta }_{12}}{\partial x^{\beta }} -\frac{\partial \varGamma ^{(2)\beta }_{1\beta }}{\partial x^2}+\\&\quad \varGamma ^{(0)\beta }_{12}\varGamma ^{(2)\eta }_{\beta \eta }+\varGamma ^{(2)\beta }_{12}\varGamma ^{(0)\eta }_{\beta \eta }+\varGamma ^{(1)\beta }_{12}\varGamma ^{(1)\eta }_{\beta \eta }-\varGamma ^{(2)\alpha }_{1\beta }\varGamma ^{(0)\beta }_{2\alpha }-\varGamma a^{(1)\alpha }_{1\beta }\varGamma ^{(1)\beta }_{2\alpha }.\\ \end{aligned} \end{aligned}$$
(A-15)

Here

$$\begin{aligned} \varGamma ^{(2)2}_{12 }=\frac{1}{2}H^{(1L)22}\frac{\partial H^{(1L)}_{22}}{\partial x^1} + \frac{1}{2}H^{(1L)32}\frac{\partial H^{(1L)}_{32}}{\partial x^1} \end{aligned}$$

is the only nonzero \(\varGamma ^{(2)\beta }_{1,2}\) term. Thus,

$$\begin{aligned} \frac{\partial \varGamma ^{(2)\beta }_{12}}{\partial x^{\beta }} = \frac{\partial \varGamma ^{(2)2}_{12}}{\partial x^2}. \end{aligned}$$

As well,

$$\begin{aligned} \frac{\partial \varGamma ^{(2)\beta }_{1\beta }}{\partial x^2} = \frac{\partial \varGamma ^{(2)2}_{12}}{\partial x^2}, \end{aligned}$$

and, thus, we have

$$\begin{aligned} \frac{\partial \varGamma ^{(2)\beta }_{12}}{\partial x^{\beta }} - \frac{\partial \varGamma ^{(2)\beta }_{1\beta }}{\partial x^2} = 0. \end{aligned}$$

Further,

$$\begin{aligned} \varGamma ^{(0)\beta }_{12}\varGamma ^{(2)\eta }_{\beta \eta } = \varGamma ^{(0)3}_{12}\left( \varGamma ^{(2)2}_{32}+\varGamma ^{(2)3}_{33}\right) = \frac{1}{r}\left( \varGamma ^{(2)2}_{32}+\varGamma ^{(2)3}_{33}\right) , \end{aligned}$$

and, thus,

$$\begin{aligned} \varGamma ^{(0)\beta }_{12}\varGamma ^{(2)\eta }_{\beta \eta } = \frac{1}{r}\left( \frac{1}{2}H^{(1L)23*}\frac{\partial H^{(1L)}_{33}}{\partial x^2}-\frac{1}{2}H^{(1L)32*}\frac{\partial H^{(1L)}_{33}}{\partial x^2}\right) = 0. \end{aligned}$$

Proceed further:

$$\begin{aligned}{} & {} \varGamma ^{(2)\beta }_{12}\varGamma ^{(0)\eta }_{\beta \eta } = \varGamma ^{(2)2}_{12}\varGamma ^{(0)\eta }_{2\eta } = 0,\\{} & {} \varGamma ^{(1)\beta }_{12}\varGamma ^{(1)\eta }_{\beta \eta } = 0,\\{} & {} \quad -\varGamma ^{(2)\alpha }_{1\beta }\varGamma ^{(0)\beta }_{2\alpha } = -\frac{1}{r}\varGamma ^{(2)1}_{13} = 0,\\{} & {} \quad -\varGamma ^{(1)\alpha }_{1\beta }\varGamma ^{(1)\beta }_{2\alpha } = 0. \end{aligned}$$

Thus,

$$\begin{aligned} \mathbf {R^{(2,0)}_{12} = 0}. \end{aligned}$$
(A-16)

Now, calculate the \(\textbf{R}\)-component

\(\mathbf {R^{(20)}_{20}}\).

$$\begin{aligned}{} & {} R^{(2)}_{\gamma =0@\tau =2} = \frac{\partial \varGamma ^{(2)\beta }_{02}}{\partial x^{\beta }}-\frac{\partial \varGamma ^{(2)\beta }_{0\beta }}{\partial x^2}\nonumber \\{} & {} \quad +\varGamma ^{(0)\beta }_{02}\varGamma ^{(2)\eta }_{\beta \eta }+\varGamma ^{(2)\beta }_{02}\varGamma ^{(0)\eta }_{\beta \eta }+\varGamma ^{(1)\beta }_{02}\varGamma ^{(1)\eta }_{\beta \eta }-\varGamma ^{(2)\alpha }_{0,\beta }\varGamma ^{(0)\beta }_{2\alpha }-\varGamma ^{(1)\alpha }_{0\beta }\varGamma ^{(1)\beta }_{2\alpha }. \end{aligned}$$
(A-17)

We have

$$\begin{aligned}{} & {} \varGamma ^{(2)\beta }_{02}=\frac{1}{2}h^{(1L)\beta \eta }\left( \frac{\partial h^{(1L)}_{\eta 0}}{\partial x^2}+\frac{\partial h^{(1L)}_{\eta 2}}{\partial x^0}- \frac{\partial h^{(1L)}_{02}}{\partial x^\eta }\right) = \frac{1}{2}h^{(1L)\beta 2}\frac{\partial h^{(1L)}_{22}}{\partial x^0}\\{} & {} \quad + \frac{1}{2}h^{(1L)\beta 3}\frac{\partial h^{(1L)}_{32}}{\partial x^0}. \end{aligned}$$

Thus,

$$\begin{aligned}{} & {} \frac{\partial \varGamma ^{(2)\beta }_{02}}{\partial x^{\beta }} = \frac{1}{2}\frac{\partial h^{(1L)22}}{\partial x^2}\frac{\partial h^{(1L)}_{22}}{\partial x^0} + \frac{1}{2}h^{(1L)22}\frac{\partial ^2 h^{(1L)}_{22}}{\partial x^0 \partial x^2} + \frac{1}{2}\frac{\partial h^{(1L)23}}{\partial x^2}\frac{\partial h^{(1L)}_{32}}{\partial x^0} \\{} & {} \quad + \frac{1}{2}h^{(1L)23}\frac{\partial ^2 h^{(1L)}_{32}}{\partial x^0 \partial x^2}. \end{aligned}$$

and for the zero harmonic

$$\begin{aligned}{} & {} \frac{\partial \varGamma ^{(2)\beta }_{02}}{\partial x^{\beta }} = \frac{1}{2}\frac{\partial H^{(1L)2}_2}{\partial x^2}\frac{\partial H^{(1L)2}_2}{\partial x^0} + \frac{1}{2}H^{(1L)2}_2\frac{\partial ^2 H^{(1L)2}_2}{\partial x^0 \partial x^2} + \frac{1}{2}\frac{\partial H^{(1L)3}_2}{\partial x^2}\frac{\partial H^{(1L)3}_2}{\partial x^0}\\{} & {} \quad + \frac{1}{2}H^{(1L)3}_2\frac{\partial ^2 H^{(1L)3}_2}{\partial x^0 \partial x^2}. \end{aligned}$$

In the same manner

$$\begin{aligned}{} & {} \varGamma ^{(2)\beta }_{\gamma =0@\tau =\beta }=\frac{1}{2}h^{(1L)\beta \eta }\left( \frac{\partial h^{(1L)}_{\eta 0}}{\partial x^\beta }+\frac{\partial h^{(1L)}_{\eta \beta }}{\partial x^0}- \frac{\partial h^{(1L)}_{0\beta }}{\partial x^\eta }\right) = \frac{1}{2}h^{(1L)\beta 2}\frac{\partial h^{(1L)}_{22}}{\partial x^0}\\{} & {} \quad + \frac{1}{2}h^{(1L)\beta 3}\frac{\partial h^{(1L)}_{32}}{\partial x^0}, \end{aligned}$$

or, for the zero harmonic

$$\begin{aligned}{} & {} \varGamma ^{(2)\beta }_{\gamma =0@\tau =\beta }= \frac{1}{2}H^{(1L)22}\frac{\partial H^{(1L)}_{22}}{\partial x^0} +H^{(1L)23}\frac{\partial H^{(1L)}_{23}}{\partial x^0} +\frac{1}{2}H^{(1L)33}\frac{\partial H^{(1L)}_{33}}{\partial x^0} \\{} & {} \quad = H^{(1L)22}\frac{\partial H^{(1L)}_{22}}{\partial x^0} +H^{(1L)23}\frac{\partial H^{(1L)}_{23}}{\partial x^0}. \end{aligned}$$

Therefore,

$$\begin{aligned}{} & {} \frac{\partial \varGamma ^{(2)\beta }_{0\beta }}{\partial x^2} = \frac{\partial }{\partial x^2}\left[ H^{(1L)22}\frac{\partial H^{(1L)}_{22}}{\partial x^0} +H^{(1L)23}\frac{\partial H^{(1L)}_{23}}{\partial x^0} \right] \\{} & {} \quad = \left[ \frac{\partial H^{(1L)2}_2}{\partial x^2}\frac{\partial H^{(1L)2}_2}{\partial x^0} +\frac{\partial H^{(1L)2}_3}{\partial x^2}\frac{\partial H^{(1L)2}_3}{\partial x^0}\right] \\{} & {} \qquad + \left[ H^{(1L)2}_2\frac{\partial ^2 H^{(1L)2}_2}{\partial x^2\partial x^0}+H^{(1L)3}_2\frac{\partial ^2 H^{(1L)2}_{3}}{\partial x^2\partial x^0}\right] . \end{aligned}$$

Now, we find

$$\begin{aligned}{} & {} \frac{\partial \varGamma ^{(2)\beta }_{02}}{\partial x^{\beta }} - \frac{\partial \varGamma ^{(2)\beta }_{0,\beta }}{\partial x^2} = - \frac{1}{2}\left[ \frac{\partial H^{(1L)2}_2}{\partial x^2}\frac{\partial H^{(1L)2}_2}{\partial x^0} +\frac{\partial H^{(1L)2}_3}{\partial x^2}\frac{\partial H^{(1L)2}_3}{\partial x^0}\right] \\{} & {} \quad -\frac{1}{2}\left[ H^{(1L)2}_2\frac{\partial ^2 H^{(1L)2}_2}{\partial x^2\partial x^0} +H^{(1L)3}_3\frac{\partial ^2 H^{(1L)2}_{23}}{\partial x^2\partial x^0}\right] . \end{aligned}$$

Further,

$$\begin{aligned}{} & {} \varGamma ^{(0)\beta }_{02}\varGamma ^{(2)\eta }_{\beta \eta } = 0,\\{} & {} \varGamma ^{(2)\beta }_{02}\varGamma ^{(0)\eta }_{\beta \eta } = \frac{1}{r}\varGamma ^{(2)1}_{02} = 0,\\{} & {} \varGamma ^{(1)\beta }_{02}\varGamma ^{(1)\eta }_{\beta \eta } = 0,\\{} & {} \varGamma ^{(2)\alpha }_{0\beta }\varGamma ^{(0)\beta }_{2\alpha } = 0,\\{} & {} \varGamma ^{(1)\alpha }_{0\beta }\varGamma ^{(1)\beta }_{2\alpha } = 0. \end{aligned}$$

Finally,

$$\begin{aligned}{} & {} \textbf{R}^{(\textbf{20})}_{\textbf{20}} = - \frac{\textbf{1}}{\textbf{2}}\left[ \frac{\partial \textbf{H}^{\mathbf {2(1L)}}_{\textbf{2}}}{\partial \textbf{x}^{\textbf{2}}} \frac{\partial \textbf{H}^{\mathbf {2(1L)}}_{\textbf{2}}}{\partial \textbf{x}^\textbf{0}} +\frac{\partial \textbf{H}^{\mathbf {2(1L)}}_{\textbf{3}}}{\partial \textbf{x}^{\textbf{2}}} \frac{\partial \textbf{H}^{\mathbf {2(1L)}}_{\textbf{3}}}{\partial \textbf{x}^{\textbf{0}}}\right] \nonumber \\{} & {} \quad -\frac{\textbf{1}}{\textbf{2}}\left[ \textbf{H}^{\mathbf {2(1L)}}_{\textbf{2}} \frac{\partial ^\textbf{2} \textbf{H}^{\mathbf {2(1L)}}_{\textbf{2}}}{\partial \textbf{x}^\textbf{2}\partial \textbf{x}^{\textbf{0}}} +\textbf{H}^{\mathbf {2(1L)}}_{\textbf{3}}\frac{\partial ^{\textbf{2}} \textbf{H}^{\mathbf {2(1L)2}}_{\textbf{3}}}{\partial \textbf{x}^{\textbf{2}}\partial \textbf{x}^{\textbf{0}}}\right] . \end{aligned}$$
(A-18)

Or

$$\begin{aligned} \textbf{R}^{\mathbf {(20)}}_{\textbf{20}} = - \frac{\textbf{1}}{\textbf{4}} \frac{\partial ^{\textbf{2}} }{\partial \textbf{x}^{\textbf{0}}\partial \textbf{x}^{\textbf{2}}}\left[ \left( \textbf{H}^{\mathbf {2(1L)}}_{\textbf{2}} \textbf{H}^{\mathbf {2(1L)}}_{\textbf{2}}\right) + \left( \textbf{H}^{\mathbf {2(1L)}}_{\textbf{3}}\textbf{H}^{\mathbf {2(1L)}}_{\textbf{3}}\right) \right] . \end{aligned}$$
(A-19)

As is shown in the main text, we can limit ourselves to the components that have been calculated above.

*******

However, we will continue our calculations formally, mainly for the purpose of illustration.

Consider the component

\(\mathbf {R^{(20)}_{32}}\).

$$\begin{aligned}{} & {} R^{(2,0)}_{\gamma =3@\tau =2} = \frac{\partial \varGamma ^{(2)\beta }_{32}}{\partial x^{\beta }}-\frac{\partial \varGamma ^{(2)\beta }_{3\beta }}{\partial x^2}+\varGamma ^{(0)\beta }_{32}\varGamma ^{(2)\eta }_{\beta \eta }+\varGamma ^{(2)\beta }_{32}\varGamma ^{(0)\eta }_{\beta \eta }+\varGamma ^{(1)\beta }_{32}\varGamma ^{(1)\eta }_{\beta ,\eta }\nonumber \\{} & {} \quad -\varGamma ^{(2)\alpha }_{3\beta }\varGamma ^{(0)\beta }_{2\alpha }-\varGamma ^{(1)\alpha }_{3\beta }\varGamma ^{(1)\beta }_{2\alpha }. \end{aligned}$$
(A-20)

We have

$$\begin{aligned}{} & {} \varGamma ^{(2)2}_{23}=\frac{1}{2}H^{(1L)22}\frac{\partial H^{(1L)}_{22}}{\partial x^3}+\frac{1}{2}H^{(1L)23}\frac{\partial H^{(1L)}_{33}}{\partial x^2} = -\frac{1}{2}H^{(1L)23}\frac{\partial H^{(1L)}_{22}}{\partial x^2},\\{} & {} \varGamma ^{(2)3}_{23}=\frac{1}{2}H^{(1L)32}\frac{\partial H^{(1L)}_{22}}{\partial x^3} +\frac{1}{2}H^{(1L)33}\frac{\partial H^{(1L)}_{33}}{\partial x^2} = \frac{1}{2}H^{(1L)22}\frac{\partial H^{(1L)}_{22}}{\partial x^2},\\{} & {} \frac{\partial \varGamma ^{(2)\beta }_{32}}{\partial x^\beta } =^{H_{33} = -H_{22}} \frac{1}{2}\frac{\partial }{\partial x^2}\left( -H^{(1L)23}\frac{\partial H^{(1L)}_{22}}{\partial x^2} +H^{(1L)22}\frac{\partial H^{(1L)}_{22}}{\partial x^2}\right) . \end{aligned}$$

Further,

$$\begin{aligned} \frac{\partial \varGamma ^{(2)\beta }_{3\beta }}{\partial x^2} = \frac{\partial }{\partial x^2}\left[ \frac{1}{2}\frac{\partial }{\partial x^2}\left( -H^{(1L)23}\frac{\partial H^{(1L)}_{22}}{\partial x^2} +H^{(1L)22}\frac{\partial H^{(1L)}_{22}}{\partial x^2}\right) \right] . \end{aligned}$$

Now, we see

$$\begin{aligned} \frac{\partial \varGamma ^{(2)\beta }_{32}}{\partial x^{\beta }}-\frac{\partial \varGamma ^{(2)\beta }_{3\beta }}{\partial x^2} = \textbf{0}. \end{aligned}$$

Continue the calculations.

$$\begin{aligned}{} & {} \varGamma ^{(0)\beta }_{32}\varGamma ^{(2)\eta }_{\beta \eta } = 0,\\{} & {} \varGamma ^{(2)\beta }_{32}\varGamma ^{(0)\eta }_{\beta \eta } = 0,\\{} & {} \varGamma ^{(2)\alpha }_{3\beta }\varGamma ^{(0)\beta }_{2\alpha } = -\frac{1}{r}\varGamma ^{(2)1}_{33} = 0,\\{} & {} \varGamma ^{(1)\alpha }_{3,\beta }\varGamma ^{(1)\beta }_{2\alpha } = \varGamma ^{(1)2}_{32}\varGamma ^{(1)2}_{22} = \frac{1}{r^2}\sin {2\theta }H^{(1L) 33}*0 =0. \end{aligned}$$

Thus, obtain finally

$$\begin{aligned} \mathbf {R^{(20)}_{32} = 0}. \end{aligned}$$
(A-21)

For the rest components we find:

\(\mathbf {R^{(20)}_{22}}\)

$$\begin{aligned}{} & {} R^{(20)}_{\gamma =2@\tau =2} = \frac{\partial \varGamma ^{(2)\beta }_{22}}{\partial x^{\beta }}-\frac{\partial \varGamma ^{(2)\beta }_{2\beta }}{\partial x^2}+\varGamma ^{(0)\beta }_{22}|_{=0}\varGamma ^{(2)\eta }_{\beta \eta }+\varGamma ^{(2)\beta }_{22}\varGamma ^{(0)\eta }_{\beta \eta }+2\varGamma ^{(1)\beta }_{22}\varGamma ^{(1)\eta }_{\beta \eta }\nonumber \\{} & {} \quad -\varGamma ^{(2)\alpha }_{2\beta }\varGamma ^{(0)\beta }_{2\alpha }-2\varGamma ^{(1)\alpha }_{2\beta }\varGamma ^{(1)\beta }_{2\alpha }.\nonumber \\{} & {} \varGamma ^{(2)\beta }_{\gamma \tau }=\frac{1}{2}H^{(1L)\alpha \beta }\left( \frac{\partial H^{(1L)}_{\alpha \gamma }}{\partial x^\tau }-\frac{\partial H^{(1L)}_{\alpha \tau }}{\partial x^\gamma }- \frac{\partial H^{(1L)}_{\gamma \tau }}{\partial x^\alpha }\right) \nonumber \\{} & {} \varGamma ^{(2)\beta }_{\gamma =2@\tau =2 }=-\frac{1}{2}H^{(1L)\alpha \beta }\left( \frac{\partial H^{(1L)}_{22}}{\partial x^\alpha }\right) = \frac{1}{2}r^2H^{(1L)2\beta }\left( \frac{\partial H^{2(1L)}_{2}}{\partial x^2}\right) \nonumber \\{} & {} \frac{\partial }{\partial x^\beta }\varGamma ^{(2)\beta }_{\gamma =2@\tau =2 }=\frac{\partial }{\partial x^{\beta =2}}\varGamma ^{(2)\beta =2}_{\gamma =2@\tau =2 }= -\frac{1}{2}\frac{\partial }{\partial x^2}\left( H^{2(1L)}_2\frac{\partial H^{2(1L)}_{2}}{\partial x^2}\right) \nonumber \\{} & {} \quad = -\frac{1}{4}\frac{\partial ^2 \left( H^{2(1L)}_{2}\right) ^2}{\partial (x^2)^2}\nonumber \\{} & {} \frac{\partial \varGamma ^{(2)\beta }_{22}}{\partial x^{\beta }} = \frac{1}{4}\frac{\partial ^2 \left( H^{2(1L)}_{2}\right) ^2}{\partial (x^2)^2}. \end{aligned}$$
(A-22)

In its turn

$$\begin{aligned}{} & {} \varGamma ^{(2)\beta }_{\gamma =2@\tau =\beta }= \frac{1}{2}H^{(1L)\alpha \beta }\left( \frac{\partial H^{(1L)}_{\alpha 2}}{\partial x^\beta }+\frac{\partial H^{(1L)}_{\alpha \beta }}{\partial x^2}- \frac{\partial H^{(1L)}_{2,\beta }}{\partial x^\alpha }\right) =\\{} & {} \quad =\frac{1}{2}H^{(1L)\alpha =2@\beta }\frac{\partial H^{(1L)}_{22}}{\partial x^\beta }+\frac{1}{2}H^{(1L)\alpha =3@\beta }\left( \frac{\partial H^{(1L)}_{32}}{\partial x^\beta }+\frac{\partial H^{(1L)}_{3,\beta }}{\partial x^2}\right) =\\{} & {} \quad =\frac{1}{2}H^{(1L)22}\frac{\partial H^{(1L)}_{22}}{\partial x^2}+\frac{1}{2}H^{(1L)32}\frac{\partial H^{(1L)}_{32}}{\partial x^2}+\frac{1}{2}H^{(1L)33}\frac{\partial H^{(1L)}_{33}}{\partial x^2}=\\{} & {} \quad =\frac{1}{4}\frac{\partial \left( H^{2(1L)}_{2}\right) ^2}{\partial x^2}+\frac{1}{4\sin ^2{\theta }}\frac{\partial \left( H^{2(1L)}_3H^{2(1L)}_{3}\right) }{\partial x^2}+\frac{1}{2}\frac{\partial \left( H^{(1L)33}H^{(1L)}_{33}\right) }{\partial x^2}\\{} & {} \quad =\frac{1}{4}\frac{\partial \left( H^{2(1L)}_{2}\right) ^2}{\partial x^2} + \frac{1}{4\sin ^2{\theta }}\frac{\partial \left( H^{2(1L)}_{3}\right) ^2}{\partial x^2} - \frac{3\cos {\theta }}{4\sin ^3{\theta }}\left( H^{2(1L)}_{3}\right) ^2 +\frac{1}{4}\frac{\partial \left( H^{3(1L)}_{3}\right) ^2}{\partial x^2}. \end{aligned}$$

Thus,

$$\begin{aligned}{} & {} \frac{\partial \varGamma ^{(2)\beta }_{2\beta }}{\partial x^2} = \frac{1}{4}\frac{\partial ^2 \left( H^{2(1L)}_{2}\right) ^2}{\partial (x^2)^2} + \frac{1}{4\sin ^2{\theta }}\frac{\partial ^2 \left( H^{2(1L)}_{3}\right) ^2}{\partial (x^2)^2}\\{} & {} \quad - \frac{3}{4}\frac{\cos {\theta }}{\sin ^3{\theta }}\frac{\partial \left( H^{2(1L)}_{3}\right) ^2}{\partial x^2} +\frac{1}{4}\frac{\partial ^2 \left( H^{3(1L)}_{3}\right) ^2}{\partial (x^2)^2} +\frac{3}{4\sin ^2{\theta }}\left( 1+4\dfrac{\cos ^2{\theta }}{\sin ^2{\theta }}\right) \left( H^{2(1L)}_{3}\right) ^2. \end{aligned}$$

After this,

$$\begin{aligned}{} & {} \frac{\partial \varGamma ^{(2)\beta }_{22}}{\partial x^{\beta }}-\frac{\partial \varGamma ^{(2)\beta }_{2\beta }}{\partial x^2} = -\frac{1}{4}\frac{1}{\sin ^2{\theta }}\frac{\partial ^2 \left( H^{2(1L)}_{3}\right) ^2}{\partial (x^2)^2} +\frac{3}{4}\frac{\cos {\theta }}{\sin ^3{\theta }}\frac{\partial \left( H^{2(1L)}_{3}\right) ^2}{\partial x^2} \\{} & {} \quad -\frac{3}{4\sin ^2{\theta }}\left( 1+4\dfrac{\cos ^2{\theta }}{\sin ^2{\theta }}\right) \left( H^{2(1L)}_{3}\right) ^2-\frac{1}{4}\frac{\partial ^2 \left( H^{3(1L)}_{3}\right) ^2}{\partial (x^2)^2}. \end{aligned}$$

The rest nonzero terms are:

$$\begin{aligned}{} & {} \varGamma ^{(0)2}_{21}=\frac{1}{2}g^{(0)22}\left( \frac{\partial g^{(0)}_{22}}{\partial x^1}\right) = \frac{1}{r}.\\{} & {} \varGamma ^{(0)1}_{22}=-\frac{1}{2}g^{(0)11}\left( \frac{\partial g^{(0)}_{22}}{\partial x^1}\right) = -r.\\{} & {} \varGamma ^{(0)3}_{23}=\frac{1}{2}g^{33}\left( \frac{\partial g^{(0)}_{33}}{\partial x^2}\right) = \frac{\cos {\theta }}{\sin {\theta }}.\\{} & {} \varGamma ^{(2)\beta }_{\gamma \tau }=\frac{1}{2}H^{(1L)\alpha \beta }\left( \frac{\partial H^{(1L)}_{\alpha \gamma }}{\partial x^\tau }-\frac{\partial H^{(1L)}_{\alpha \tau }}{\partial x^\gamma }- \frac{\partial H^{(1L)}_{\gamma \tau }}{\partial x^\alpha }\right) \\{} & {} \varGamma ^{(2)\beta =1}_{\gamma =2@\tau =3 }=\frac{1}{2}H^{(1L)\alpha 1}\left( \frac{\partial H^{(1L)}_{\alpha \gamma }}{\partial x^\tau }-\frac{\partial H^{(1L)}_{\alpha \tau }}{\partial x^\gamma }- \frac{\partial H^{(1L)}_{\gamma \tau }}{\partial x^\alpha }\right) =0\\{} & {} \varGamma ^{(2)\beta =2}_{\gamma =2@\tau =1 }=\frac{1}{2}H^{(1L)\alpha 2}\left( \frac{\partial H^{(1L)}_{\alpha 2}}{\partial x^1}\right) = \frac{1}{2}H^{(1L)22}\left( \frac{\partial H^{(1L)}_{22}}{\partial x^1}\right) \\{} & {} \quad +\frac{1}{2}H^{(1L)32}\left( \frac{\partial H^{(1L)}_{32}}{\partial x^1}\right) \\{} & {} \quad =\frac{1}{4}\frac{\left( \partial H^{2(1L)}_{2}\right) ^2}{\partial x^1}+\frac{1}{2}H^{(1L)32}\left( \frac{\partial H^{(1L)}_{32}}{\partial x^1}\right) \\{} & {} \varGamma ^{(2)\beta =1}_{\gamma =2@\tau =2 }=\frac{1}{2}H^{(1L)\alpha 1}\left( \frac{\partial H^{(1L)}_{\alpha 2}}{\partial x^2}-\frac{\partial H^{(1L)}_{\alpha 2}}{\partial x^2}- \frac{\partial H^{(1L)}_{22}}{\partial x^\alpha }\right) = 0,\\{} & {} \varGamma ^{(2)2}_{21} = e^{i\varPsi }\left[ \frac{1}{2}H^{2(1L)}_2\left( \frac{\partial H^{2(1L)}_2}{\partial x^1}\right) + \frac{1}{r}\left( H^{2(1L)}_2\right) ^2+\frac{1}{2}H^{2(1L)}_3\left( \frac{\partial H^{2(1L)}_3}{\partial x^1}\right) \right. \\{} & {} \quad \left. + \frac{1}{r}\left( H^{2(1L)}_3\right) ^2\right] ,\\{} & {} \varGamma ^{(2)3}_{23}=-e^{i\varPsi } \left[ \frac{1}{\sin ^2{\theta }}H^{2(1L)}_3\left( \frac{\partial H^{2(1L)}_{3}}{\partial x^2}\right) + \frac{1}{2}H^{3(1L)}_3\left( \frac{\partial H^{3(1L)}_{3}}{\partial x^2}\right) \right. \\{} & {} \quad \left. + \frac{\cos {\theta }}{\sin {\theta }}H^{3(1L)}_3H^{3(1L)}_3\right] . \end{aligned}$$

Thus,

$$\begin{aligned}{} & {} -\varGamma ^{(2)\alpha }_{2\beta }\varGamma ^{(0)\beta }_{2\alpha }=-\varGamma ^{(0)\beta =2}_{2@\alpha =1}\varGamma ^{(2)1}_{22}-\varGamma ^{(0)\beta =1}_{2@\alpha =2}\varGamma ^{(2)2}_{21}-\varGamma ^{(0)\beta =3}_{2@\alpha =3}\varGamma ^{(2)3}_{23}=\\{} & {} \quad = r\varGamma ^{(2)2}_{21}-\frac{\cos {\theta }}{\sin {\theta }}\varGamma ^{(2)3}_{23}=\\{} & {} \quad = r\left[ \frac{1}{2}H^{2(1L)}_2\left( \frac{\partial H^{2(1L)}_2}{\partial x^1}\right) + \frac{1}{r}\left( H^{2(1L)}_2\right) ^2+\frac{1}{2}H^{2(1L)}_3\left( \frac{\partial H^{2(1L)}_3}{\partial x^1}\right) \right. \\{} & {} \qquad \left. + \frac{1}{r}\left( H^{2(1L)}_3\right) ^2\right] \\{} & {} \qquad +\frac{\cos {\theta }}{\sin {\theta }}\left[ \frac{1}{\sin ^2{\theta }}H^{2(1L)}_3\left( \frac{\partial H^{2(1L)}_{3}}{\partial x^2}\right) + \frac{1}{2}H^{3(1L)}_3\left( \frac{\partial H^{3(1L)}_{3}}{\partial x^2}\right) \right. \\{} & {} \qquad \left. + \frac{\cos {\theta }}{\sin {\theta }}\left( H^{3(1L)}_3\right) ^2 \right] . \end{aligned}$$

Further, the 1-st order nonzero terms (we derive the proper \(h_{\alpha \beta }-\)functions, but retain the \(H_{\alpha \beta }-\) amplitude symbols, anticipating the next multiplication on \(h^*_{\alpha \beta }\)).

$$\begin{aligned}{} & {} \varGamma ^{(1)\beta }_{\gamma \tau }=\frac{1}{2}H^{(1L)\alpha \beta }\left( \frac{\partial g^{(0)}_{\alpha \gamma }}{\partial x^\tau }+\frac{\partial g^{(0)}_{\alpha \tau }}{\partial x^\gamma }- \frac{\partial g^{(0)}_{\gamma \tau }}{\partial x^\alpha }\right) \\{} & {} \quad - \frac{1}{2}g^{(0)\beta \beta }\left( \frac{\partial H^{(1L)}_{\beta \gamma }}{\partial x^\tau }+\frac{\partial H^{(1L)}_{\beta \tau }}{\partial x^\gamma }- \frac{\partial H^{(1L)}_{\gamma \tau }}{\partial x^\beta }\right) .\\{} & {} \varGamma ^{(1)\beta =0}_{\gamma =2@\tau =2 }=\frac{1}{2}H^{(1L)\alpha 0}\left( \frac{\partial g^{(0)}_{\alpha \gamma }}{\partial x^\tau }+\frac{\partial g^{(0)}_{\alpha \tau }}{\partial x^\gamma }- \frac{\partial g^{(0)}_{\gamma \tau }}{\partial x^\alpha }\right) |_{=0} \\{} & {} \quad - \frac{1}{2}g^{(0)00}\left( \frac{\partial H^{(1L)}_{0\gamma }}{\partial x^\tau }+\frac{\partial H^{(1L)}_{\beta \tau }}{\partial x^\gamma }- \frac{\partial H^{(1L)}_{\gamma \tau }}{\partial x^\beta }\right) .\\{} & {} \varGamma ^{(1)0}_{22 }= -e^{i\varPsi }\frac{r^2}{2}\left( \frac{\partial H^{2(1L)}_{2}}{\partial x^0} -\frac{i\omega }{c}H^{2(1L)}_{2}\right) .\\{} & {} \varGamma ^{(1)\beta =0}_{\gamma =2@\tau =3 }=\frac{1}{2}H^{(1L)\alpha 0}\left( \frac{\partial g^{(0)}_{\alpha \gamma }}{\partial x^\tau }+\frac{\partial g^{(0)}_{\alpha \tau }}{\partial x^\gamma }- \frac{\partial g^{(0)}_{\gamma \tau }}{\partial x^\alpha }\right) |_{=0} \\{} & {} \quad - \frac{1}{2}g^{(0)00}\left( \frac{\partial H^{(1L)}_{0\gamma }}{\partial x^\tau }+\frac{\partial H^{(1L)}_{0\tau }}{\partial x^\gamma }- \frac{\partial H^{(1L)}_{23}}{\partial x^0}\right) \end{aligned}$$
$$\begin{aligned}{} & {} \varGamma ^{(1)0}_{23 }= -e^{i\varPsi }\frac{r^2}{2}\left( \frac{\partial H^{2(1L)}_{3}}{\partial x^0}\mp \frac{i\omega }{c}H^{2(1L)}_{2}\right) .\\{} & {} \varGamma ^{(1)\beta =1}_{\gamma =2@\tau =2 }=\frac{1}{2}H^{(1L)\alpha 1}\left( \frac{\partial g^{(0)}_{\alpha \gamma }}{\partial x^\tau }+\frac{\partial g^{(0)}_{\alpha \tau }}{\partial x^\gamma }- \frac{\partial g^{(0)}_{\gamma \tau }}{\partial x^\alpha }\right) |_{=0} \\{} & {} \quad - \frac{1}{2}g^{(0)11}\left( \frac{\partial H^{(1L)}_{1\gamma }}{\partial x^\tau }+\frac{\partial H^{(1L)}_{1\tau }}{\partial x^\gamma }- \frac{\partial H^{(1L)}_{22}}{\partial x^1}\right) .\\{} & {} \varGamma ^{(1)1}_{22}= e^{i\varPsi }\left[ \frac{r^2}{2}\left( \frac{\partial H^{2(1L)}_{2}}{\partial x^1}\right) -i\frac{r^2}{2}\frac{\omega }{c}H^{2(1L)}_{2}+rH^{2(1L)}_{2}\right] .\\{} & {} \varGamma ^{(1)1}_{23}= e^{i\varPsi }\left[ \frac{r^2}{2}\left( \frac{\partial H^{2(1L)}_{3}}{\partial x^1}\right) -i\frac{r^2}{2}\frac{\omega }{c}H^{2(1L)}_{3}+rH^{2(1L)}_{3}\right] .\\{} & {} \varGamma ^{(1)\beta =2}_{\gamma =2@\tau =0 }=\frac{1}{2}H^{(1L)\alpha 2}\left( \frac{\partial g^{(0)}_{\alpha 2}}{\partial x^0}+\frac{\partial g^{(0)}_{\alpha 0}}{\partial x^2}- \frac{\partial g^{(0)}_{20}}{\partial x^\alpha }\right) |_{=0} \\{} & {} \quad - \frac{1}{2}g^{(0)22}\left( \frac{\partial H^{(1L)}_{22}}{\partial x^0}+\frac{\partial H^{(1L)}_{20}}{\partial x^2}- \frac{\partial H^{(1L)}_{20}}{\partial x^2}\right) .\\{} & {} \varGamma ^{(1)2}_{20}= - \frac{e^{i\varPsi }}{2}\left[ \frac{\partial H^{2(1L)}_{2}}{\partial x^0}+\frac{i\omega }{c}H^{2(1L)}_{2}\right] .\\{} & {} \varGamma ^{(1)\beta =2}_{\gamma =2@\tau =1 }=\frac{1}{2}H^{(1L)\alpha 2}\left( \frac{\partial g^{(0)}_{\alpha 2}}{\partial x^1}+\frac{\partial g^{(0)}_{\alpha 1}}{\partial x^2}- \frac{\partial g^{(0)}_{21}}{\partial x^\alpha }\right) \\{} & {} \quad - \frac{1}{2}g^{(0)22}\left( \frac{\partial H^{(1L)}_{22}}{\partial x^1}+\frac{\partial H^{(1L)}_{21}}{\partial x^2}- \frac{\partial H^{(1L)}_{21}}{\partial x^2}\right) .\\{} & {} \varGamma ^{(1)2}_{21}= -\frac{e^{i\varPsi }}{2}\left[ \frac{\partial H^{2(1L)}_{2}}{\partial x^1} - \frac{i\omega }{c}H^{2(1L)}_{2}\right] .\\{} & {} \varGamma ^{(1)2}_{22}= -e^{i\varPsi }\left[ \frac{1}{2}\frac{\partial H^{2(1L)}_2}{\partial x^2}\right] .\\{} & {} \varGamma ^{(1)2}_{23}=e^{i\varPsi }\frac{\cos {\theta }}{\sin {\theta }}H^{3(1L)}_3 = -e^{\pm i\omega t}\frac{\cos {\theta }}{\sin ^3{\theta }}H^{2(1L)}_2.\\{} & {} \varGamma ^{(1)3}_{20}= - \frac{e^{i\varPsi }}{2}\left( \frac{\partial H^{3(1L)}_{2}}{\partial x^0}\right) = - \frac{e^{i\varPsi }}{2\sin ^2{\theta }}\left( \frac{\partial H^{2(1L)}_{3}}{\partial x^0}\right) .\\{} & {} \varGamma ^{(1)\beta =3}_{\gamma =2@\tau =1 }= \frac{e^{\pm i\omega t}}{r}h^{2(1L)}_3 - e^{\pm i\omega t}\frac{1}{2\sin ^2{\theta }}\left( e^{\pm i\omega t}\frac{\partial H^{2(1L)}_{3}}{\partial x^1} -\pm \frac{i\omega }{c}h^{2(1L)}_3\right) \\{} & {} \quad - \frac{1}{r\sin ^2{\theta }}h^{2(1L)}_{3}-\frac{1}{2r^2\sin ^2{\theta }}\frac{\partial h^{1(1L)}_{3}}{\partial x^2}\\{} & {} \varGamma ^{(1)3}_{21}= - \frac{e^{i\varPsi }}{2\sin ^2{\theta }}\left[ \left( \frac{\partial H^{2(1L)}_{3}}{\partial x^1} -\frac{i\omega }{c}H^{2(1L)}_3\right) + \frac{2\cos ^2{\theta }}{r}H^{2(1L)}_{3}\right] .\\{} & {} \varGamma ^{(1)3}_{22}= e^{i\varPsi }\left[ -\frac{1}{\sin ^2{\theta }}\frac{\partial H^{2(1L)}_{3}}{\partial x^2} + 2\frac{\cos {\theta }}{\sin ^3{\theta }} H^{2(1L)}_{3}\right] .\\{} & {} \varGamma ^{(1)3}_{23}= - \frac{e^{i\varPsi }}{2}\frac{\partial H^{3(1L)}_{3}}{\partial x^2} = - e^{i\varPsi }\left[ \frac{1}{2\sin ^2{\theta }}\frac{\partial H^{2(1L)}_{2}}{\partial x^2}+ \frac{\cos {\theta }}{\sin ^3{\theta }}H^{2(1L)}_{2}\right] . \end{aligned}$$

Thus, inserting the expressions for the \(\varGamma \)-symbols, we obtain

$$\begin{aligned}{} & {} \varGamma ^{(1)\beta }_{22}\varGamma ^{(1)*\eta }_{\beta \eta } = \varGamma ^{(1)0}_{22}\varGamma ^{(1)*\eta }_{0\eta }+\varGamma ^{(1)1}_{22}\varGamma ^{(1)*\eta }_{1\eta }|_{=0}+\varGamma ^{(1)2}_{22}\varGamma ^{(1)*\eta }_{2\eta }+\varGamma ^{(1)3}_{22}\varGamma ^{(1)*\eta }_{3\eta } =\\{} & {} \quad \frac{r^2}{4}\left[ \left( \frac{\partial H^{2(1L)}_{2}}{\partial x^0}\right) ^2+\frac{\omega ^2}{c^2}\left( H^{2(1L)}_{2}\right) ^2\right] -\frac{1}{4}\frac{\partial H^{2(1L)}_{2}}{\partial x^2}\\{} & {} \quad \left( \frac{\partial H^{2(1L)}_{2}}{\partial x^2}- 2\frac{\cos {\theta }}{\sin ^3{\theta }}H^{2(1L)}_{2}+ \frac{1}{\sin ^2{\theta }}\frac{\partial H^{2(1L)}_{2}}{\partial x^2}\right) \\{} & {} \quad + \frac{\cos {\theta }}{\sin ^5{\theta }}\frac{\partial H^{2(1L)}_{3}}{\partial x^2}H^{2(1L)}_2. \end{aligned}$$

***

$$\begin{aligned}{} & {} \varGamma ^{(1)\alpha }_{2\beta }\varGamma ^{(1)*\beta }_{2\alpha } \\{} & {} \quad = \varGamma ^{(1)\alpha =0}_{2@\beta =2}\varGamma ^{(1)*\beta =2}_{2@\alpha =0} +\varGamma ^{(1)\alpha =1}_{2@\beta =2}\varGamma ^{(1)*\beta =2}_{2@\alpha =1} +\varGamma ^{(1)\alpha =1}_{2@\beta =3}\varGamma ^{(1)*\beta =3}_{2@\alpha =1} + \varGamma ^{(1)\alpha =2}_{2@\beta =2}\varGamma ^{(1)*\beta =2}_{2@\alpha =2} \\{} & {} \qquad + \varGamma ^{(1)\alpha =3}_{2@\beta =3}\varGamma ^{(1)*\beta =3}_{2@\alpha =3}.\\{} & {} \quad = -\frac{1}{4}r^2\left[ \left( \frac{\partial H^{2(1L)}_{2}}{\partial x^0}\right) ^2+\frac{\omega ^2}{c^2}\left( H^{2(1L)}_{2}\right) ^2\right] \\{} & {} \qquad +r^2\left[ -\frac{1}{4}\left( \frac{\partial H^{2(1L)}_{2}}{\partial x^1}\right) ^2-\frac{1}{2r}H^{2(1L)}_{2}\frac{\partial H^{2(1L)}_2}{\partial x^1} -\frac{1}{4}\frac{\omega ^2}{c^2}\left( H^{2(1L)}_{2}\right) ^2\right] \\{} & {} \qquad -\frac{1}{2\sin ^2{\theta }}\left[ \frac{r^2}{2}\left( \frac{\partial H^{2(1L)}_{3}}{\partial x^1}\right) ^2+rH^{2(1L)}_{3}\right] \left[ \frac{\partial H^{2(1L)}_{3}}{\partial x^1} + \frac{2\cos ^2{\theta }}{r}H^{2(1L)}_{3}\right] \\{} & {} \quad -\frac{\omega ^2}{c^2}\frac{r^2}{4\sin ^2{\theta }}\left( H^{2(1L)}_{3}\right) ^2 \\{} & {} \qquad +\frac{1}{4}\left( \frac{\partial H^{2(1L)}_{2}}{\partial x^2}\right) ^2 +\frac{1}{4\sin ^4{\theta }}\left[ \frac{\partial H^{2(1L)}_{2}}{\partial x^2}+ 2\frac{\cos {\theta }}{\sin {\theta }}H^{2(1L)}_{2}\right] ^2 \end{aligned}$$

After simplifying and ignoring powers of \(x^0\) derivatives and higher orders of \(\frac{1}{r}\), we obtain:

$$\begin{aligned}{} & {} \varGamma ^{(1)\alpha }_{2\beta }\varGamma ^{(1)* \beta }_{2\alpha } \approx \frac{\omega ^2}{c^2}\left( H^{2(1L)}_{2}\right) ^2\\{} & {} \quad -\frac{r^2}{4}\left[ \left( \frac{\partial H^{2(1L)}_{2}}{\partial x^1}\right) ^2+\frac{2}{r}H^{2(1L)}_{2}\frac{\partial H^{2(1L)}_2}{\partial x^1} +\frac{\omega ^2}{c^2}\left( H^{2(1L)}_{2}\right) ^2\right] \\{} & {} \quad -\frac{1}{2\sin ^2{\theta }}\left[ \frac{r^2}{2}\left( \frac{\partial H^{2(1L)}_{3}}{\partial x^1}\right) ^2+rH^{2(1L)}_{3}\right] \left[ \frac{\partial H^{2(1L)}_{3}}{\partial x^1} + \frac{2\cos ^2{\theta }}{r}H^{2(1L)}_{3}\right] \\{} & {} \quad -\frac{\omega ^2}{c^2}\frac{r^2}{4\sin ^2{\theta }}\left( H^{2(1L)}_{3}\right) ^2 \\{} & {} \quad +\frac{1}{4}\left( \frac{\partial H^{2(1L)}_{2}}{\partial x^2}\right) ^2 +\frac{1}{4\sin ^4{\theta }}\left[ \frac{\partial H^{2(1L)}_{2}}{\partial x^2}+ 2\frac{\cos {\theta }}{\sin {\theta }}H^{2(1L)}_{2}\right] ^2. \end{aligned}$$

Finally, ignoring the terms containing powers of the \(x^0\) derivatives we obtain:

$$\begin{aligned}{} & {} R^{(20)}_{\gamma =2@\tau =2} = \frac{\partial \varGamma ^{(2)\beta }_{22}}{\partial x^{\beta }}-\frac{\partial \varGamma ^{(2)\beta }_{2\beta }}{\partial x^2}+\varGamma ^{(0)\beta }_{22}|_{=0}\varGamma ^{(2)\eta }_{\beta \eta }+\varGamma ^{(2)\beta =1}_{22}|_{=0}\varGamma ^{(0)\eta =3}_{\beta =1@\eta =3}\\{} & {} \quad +2\varGamma ^{(1)\beta }_{22}\varGamma ^{(1)\eta }_{\beta \eta }-\varGamma ^{(2)\alpha =1}_{2@\beta =3}|_{=0}\varGamma ^{(0)\beta =3}_{2@\alpha =1}-2\varGamma ^{(1)\alpha }_{2\beta }\varGamma ^{(1)\beta }_{2,\alpha }. \end{aligned}$$

Thus,

$$\begin{aligned}{} & {} R^{(20)}_{22}\approx -\frac{1}{4}\frac{1}{\sin ^2{\theta }}\frac{\partial ^2 \left( H^{2(1L)}_{3}\right) ^2}{\partial (x^2)^2} +\frac{3}{4}\frac{\cos {\theta }}{\sin ^3{\theta }}\frac{\partial \left( H^{2(1L)}_{3}\right) ^2}{\partial x^2} \\{} & {} \quad +2\frac{\omega ^2}{c^2}\left( H^{2(1L)}_{2}\right) ^2 -2\frac{\partial H^{2(1L)}_{2}}{\partial x^1}\left( \frac{r^2}{2}\frac{\partial H^{2(1L)}_{2}}{\partial x^1}+rH^{2(1L)}_{2}\right) -2\frac{\omega ^2}{c^2}\left( H^{2(1L)}_{2}\right) ^2\\{} & {} \quad -2\left[ \frac{1}{2}\frac{\partial H^{2(1L)}_2}{\partial x^2}\right] ^2 +2\frac{\cos {\theta }}{\sin ^3{\theta }}H^{2(1L)}_2\left[ -\frac{1}{\sin ^2{\theta }}\frac{\partial H^{2(1L)}_{3}}{\partial x^2} + 2\frac{\cos {\theta }}{\sin ^3{\theta }} H^{2(1L)}_{3}\right] \\{} & {} \quad -2\left( \frac{\omega ^2}{c^2}\left( H^{2(1L)}_{2}\right) ^2\right. \\{} & {} \quad \left. -\frac{r^2}{4}\left[ \left( \frac{\partial H^{2(1L)}_{2}}{\partial x^1}\right) ^2+\frac{2}{r}H^{2(1L)}_{2}\frac{\partial H^{2(1L)}_2}{\partial x^1} +\frac{\omega ^2}{c^2}\left( H^{2(1L)}_{2}\right) ^2\right] \right. \\{} & {} \quad \left. -\frac{1}{2\sin ^2{\theta }} \left[ \frac{r^2}{2}\left( \frac{\partial H^{2(1L)}_{3}}{\partial x^1}\right) ^2+rH^{2(1L)}_{3}\right] \left[ \frac{\partial H^{2(1L)}_{3}}{\partial x^1} + \frac{2\cos ^2{\theta }}{r}H^{2(1L)}_{3}\right] \right. \\{} & {} \quad \left. -\frac{\omega ^2}{c^2}\frac{r^2}{4\sin ^2{\theta }}\left( H^{2(1L)}_{3}\right) ^2\right. \\{} & {} \quad \left. +\frac{1}{4}\left( \frac{\partial H^{2(1L)}_{2}}{\partial x^2}\right) ^2 +\frac{1}{4\sin ^4{\theta }}\left[ \frac{\partial H^{2(1L)}_{2}}{\partial x^2}+ 2\frac{\cos {\theta }}{\sin {\theta }}H^{2(1L)}_{2}\right] ^2\right) . \end{aligned}$$

And

$$\begin{aligned} \begin{aligned} R^{(20)}_{22}&= \frac{1}{4}\left( \frac{\partial ^2 \left( H^{2(1L)}_2H^{2(1L)}_2\right) }{\partial (x^2)^2} +\frac{\partial ^2 \left( H^{3(1L)}_2H^{3(1L)}_3\right) }{\partial (x^2)^2}+\frac{\partial ^2 \left( H^{3(1L)}_2H^{2(1L)}_3\right) }{\partial (x^2)^2}\right) \\&- \frac{1}{r}\left( H^{2(1L)}_2\frac{\partial H^{2(1L)}_2}{\partial x^1}\right) - \frac{1}{r^2}H^{2(1L)}_2H^{2(1L)}_2\\&+\frac{\cos {\theta }}{\sin {\theta }}\left( H^{3(1L)}_2\frac{\partial H^{2(1L)}_{3}}{\partial x^2} + \frac{1}{2}H^{3(1L)}_3\frac{\partial H^{3(1L)}_{3}}{\partial x^2}+ \frac{\cos {\theta }}{\sin {\theta }}H^{3(1L)}_3H^{3(1L)}_3\right) \\&- \left( \sin (2\theta )H^{2(1L)}_2 + \frac{\partial H^{2(1L)}_{2}}{\partial x^2}\right) \frac{1}{\sin ^2(\theta )}\frac{\partial H^{2(1L)}_{3}}{\partial x^2}\\&+\left[ \frac{1}{4}\left( \frac{\partial H^{2(1L)}_{2}}{\partial x^0}\right) ^2 - \frac{r^2}{2}\left( \frac{\partial H^{2(1L)}_3}{\partial x^1}+\frac{2}{r}H^{2(1L)}_{3}\right) \right. \\&\quad \left. \left( \frac{1}{r}H^{3(1L)}_3 - \frac{1}{r} H^{3(1L)}_2- \frac{1}{2}\frac{\partial H^{3(1L)}_2}{\partial x^1}\right) \right] \\&-\left[ \frac{1}{4}\left( \frac{\partial H^{2(1L)}_{2}}{\partial x^2}\right) ^2 +\frac{1}{4}\left( \frac{\partial H^{2(1L)}_3}{\partial x^0}\right) ^2+\frac{r^2}{4}\left( \frac{\partial H^{2(1L)}_{3}}{\partial x^1}+\frac{2}{r}H^{2(1L)}_{3}\right) \right. \\&\quad \left. \left( \frac{\partial H^{2(1L)}_{3}}{\partial x^1}+\frac{2}{r}H^{2(1L)}_{3}\right) +\frac{1}{4}\left( \frac{\partial H^{3(1L)}_3}{\partial x^2}\right) ^2\right] .\\ \end{aligned} \end{aligned}$$
(A-23)

First of all, we drop the terms of the order \(o\left( \frac{1}{r^2}\right) \) and the second-time derivatives (or the quadratic order of the first-time derivatives). The equation takes the form:

$$\begin{aligned} \begin{aligned} R^{(20)}_{22}&= \frac{1}{4}\left( \frac{\partial ^2 \left( H^{2(1L)}_2H^{2(1L)}_2\right) }{\partial (x^2)^2} +\frac{\partial ^2 \left( H^{3(1L)}_2H^{3(1L)}_3\right) }{\partial (x^2)^2}+\frac{\partial ^2 \left( H^{3(1L)}_2H^{2(1L)}_3\right) }{\partial (x^2)^2}\right) \\&+\frac{\cos {\theta }}{\sin {\theta }}\left( H^{3(1L)}_2\frac{\partial H^{2(1L)}_{3}}{\partial x^2} + \frac{1}{2}H^{3(1L)}_3\frac{\partial H^{3(1L)}_{3}}{\partial x^2}+ \frac{\cos {\theta }}{\sin {\theta }}H^{3(1L)}_3H^{3(1L)}_3\right) \\&- \left( \sin (2\theta )H^{2(1L)}_2 + \frac{\partial H^{2(1L)}_{2}}{\partial x^2}\right) \frac{1}{\sin ^2(\theta )}\frac{\partial H^{2(1L)}_{3}}{\partial x^2}\\&-\frac{1}{4}\left( \frac{\partial H^{2(1L)}_{2}}{\partial x^2}\right) ^2\\&-\frac{r}{2}\left( \frac{\partial H^{2(1L)}_3}{\partial x^1}+\frac{2}{r}H^{2(1L)}_{3}\right) H^{3(1L)}_3.\\ \end{aligned} \end{aligned}$$
(A-24)

Let us continue further.

\(\mathbf {R^{(20)}_{03}}\)

$$\begin{aligned} R^{(2,0)}_{\gamma =0\tau =3} = \frac{\partial \varGamma ^{(2)\beta }_{03}}{\partial x^{\beta }}+\varGamma ^{(0)\beta }_{03}\varGamma ^{(2)\eta }_{\beta ,\eta }+\varGamma ^{(2)\beta }_{03}\varGamma ^{(0)\eta }_{\beta ,\eta }+\varGamma ^{(1)\beta }_{03}\varGamma ^{(1)\eta }_{\beta ,\eta }-\varGamma ^{(2)\alpha }_{0,\beta }\varGamma ^{(0)\beta }_{3,\alpha }-\varGamma ^{(1)\alpha }_{0\beta }\varGamma ^{(1)\beta }_{3,\alpha }.\nonumber \\ \end{aligned}$$
(A-25)

After simplifying according to the previous calculations

$$\begin{aligned}{} & {} R^{(20)}_{03} = \frac{\partial \varGamma ^{(2)\beta }_{03}}{\partial x^{\beta }} +\varGamma ^{(2)1}_{03}\varGamma ^{(0)3}_{13}+\varGamma ^{(1)\beta }_{03}\varGamma ^{(1)\eta }_{\beta ,\eta }-\varGamma ^{(2)1}_{03}\varGamma ^{(0)3}_{31}-\varGamma ^{(1)\alpha }_{0\beta }\varGamma ^{(1)\beta }_{3,\alpha } =\\{} & {} \quad \varGamma ^{(1)2}_{03}\varGamma ^{(1)3}_{23}-\varGamma ^{(1)2}_{02}\varGamma ^{(1)2}_{32}-\varGamma ^{(1)3}_{02}\varGamma ^{(1)2}_{33}-\varGamma ^{(1)2}_{03}\varGamma ^{(1)3}_{32} = -\varGamma ^{(1)2}_{02}\varGamma ^{(1)2}_{32}-\varGamma ^{(1)3}_{02}\varGamma ^{(1)2}_{33}. \end{aligned}$$

We have

$$\begin{aligned} \varGamma ^{(1)2}_{23} \approx -e^{\pm {i}\omega t}\frac{1}{2}\sin (2\theta )H^{3(1L)}_2, \end{aligned}$$

and then

$$\begin{aligned} -\varGamma ^{(1)2}_{02}\varGamma ^{(1)2}_{32} \approx -\frac{1}{4}\sin (2\theta )\frac{\omega }{c} H^{2(1L)}_{2}H^{3(1L)}_2. \end{aligned}$$

Further

$$\begin{aligned}{} & {} \varGamma ^{(1)3}_{02} =\mp {i}\frac{\omega }{2c}e^{\pm {i}\omega t} H^{2(1L)}_{3},\\{} & {} \varGamma ^{(1)2}_{33} = - \frac{e^{\pm {i}\omega t}}{2}\left( \sin (2\theta )H^{2(1L)}_2 + \frac{\partial H^{2(1L)}_{2}}{\partial x^2}\right) , \end{aligned}$$

and then

$$\begin{aligned} -\varGamma ^{(1)3}_{02}\varGamma ^{(1)2}_{33} = \frac{\omega }{4c}H^{2(1L)}_{3}\left( \sin (2\theta )H^{2(1L)}_2 + \frac{\partial H^{2(1L)}_{2}}{\partial x^2}\right) . \end{aligned}$$

Finally

$$\begin{aligned} R^{(20)}_{03} = \frac{\omega }{4c}H^{2(1L)}_{3}\frac{\partial H^{2(1L)}_{2}}{\partial x^2}. \end{aligned}$$
(A-26)

This component is not zero automatically but is nullified while averaging over \(\theta \).

For \(\mathbf {R^{(20)}_{13}}\) we have

$$\begin{aligned}{} & {} R^{(2)}_{\gamma =1,\tau =3} = \frac{\partial \varGamma ^{(2)2}_{13}}{\partial x^2} +\varGamma ^{(0)\beta }_{13}\varGamma ^{(2)\eta }_{\beta ,\eta }+\varGamma ^{(2)\beta }_{13}\varGamma ^{(0)\eta }_{\beta ,\eta }+\varGamma ^{(1)\beta }_{13}\varGamma ^{(1)\eta }_{\beta ,\eta }-\varGamma ^{(2)\alpha }_{1,\beta }\varGamma ^{(0)\beta }_{3,\alpha }\nonumber \\{} & {} \qquad \qquad -\varGamma ^{(1)\alpha }_{1,\beta }\varGamma ^{(1)\beta }_{3,\alpha }. \end{aligned}$$
(A-27)

Keeping only the terms of order not higher than \(\frac{1}{r^2}\), we obtain

$$\begin{aligned} R^{(2,0)}_{13} \approx \frac{1}{r}\varGamma ^{(2)\eta }_{3,\eta }+\varGamma ^{(1)\beta }_{13}\varGamma ^{(1)\eta }_{\beta ,\eta }-\varGamma ^{(1)\alpha }_{1,\beta }\varGamma ^{(1)\beta }_{3,\alpha }. \end{aligned}$$

For the zero harmonic

$$\begin{aligned}{} & {} \varGamma ^{(2)2}_{32}=\frac{1}{2}H^{2(1L)}_3\frac{\partial H^{3(1L)}_{3}}{\partial x^2} + \sin (2\theta )H^{2(1L)}_3H^{3(1L)}_{3} \sim O\left( \frac{1}{r^2} \right) ,\\{} & {} \varGamma ^{(2)3}_{33}=-\frac{1}{2}r^2\left( \sin ^2(\theta )H^{3(1L)}_2\frac{\partial H^{3(1L)}_{3}}{\partial x_2} + \sin (2\theta ) H^{3(1L)}_2H^{3(1L)}_{3}\right) \sim O\left( \frac{1}{r^0} \right) . \end{aligned}$$

Thus,

$$\begin{aligned} R^{(20)}_{13} \approx -\frac{1}{2}r\left( \sin ^2(\theta )H^{3(1L)}_2\frac{\partial H^{3(1L)}_{3}}{\partial x_2} + \sin (2\theta ) H^{3(1L)}_2H^{3(1L)}_{3}\right) \sim O\left( \frac{1}{r} \right) . \end{aligned}$$

For \(\mathbf {R^{(20)}_{33}}\) we find

$$\begin{aligned}{} & {} R^{(2,0)}_{\gamma =3@\tau =3} = \frac{\partial \varGamma ^{(2)2}_{33}}{\partial x^{2}} +\sin {2\theta }\varGamma ^{(2)\eta }_{2\eta }+\frac{1}{r}\varGamma ^{(2)2}_{33} +\varGamma ^{(1)\beta }_{33}\varGamma ^{(1)\eta }_{\beta \eta }-\frac{1}{r}\varGamma ^{(2)1}_{33}\nonumber \\{} & {} \quad -\sin {2\theta }\varGamma ^{(2)3}_{32}-\varGamma ^{(1)\alpha }_{3\beta }\varGamma ^{(1)\beta }_{3\alpha }. \end{aligned}$$
(A-28)

Or, simplifying and dropping the terms of orders \(O\left( \frac{1}{r^3} \right) \) and higher

$$\begin{aligned} R^{(20)}_{33} = \frac{\partial \varGamma ^{(2)2}_{33}}{\partial x^{2}} -\varGamma ^{(1)2}_{33}\varGamma ^{(1)3}_{32}. \end{aligned}$$

Finally, using the relation \(H^{3(1L)}_{3} = -H^{2(1L)}_{2}\) we obtain

$$\begin{aligned} \begin{aligned} R^{(2,0)}_{33} =&\frac{\partial }{\partial x^{2}}\left[ \frac{1}{2}H^{2(1L)}_2\left( \sin (2\theta )H^{2(1L)}_2 + \sin ^2\theta \frac{\partial H^{2(1L)}_2}{\partial x_2}\right) \right] \\&+ \frac{1}{4}\left( \sin (2\theta )H^{2(1L)}_2 + \frac{\partial H^{2(1L)}_{2}}{\partial x^2}\right) \sin (2\theta )H^{2(1L)}_2 \sim O\left( \frac{1}{r^2} \right) . \end{aligned} \end{aligned}$$
(A-29)

Appendix B: The "back" nonlinear effect

Emphasize that here (as well as in all sections) we deal, actually, not only with \(e^{i(\omega t -kr)}\) terms but also with \(e^{i(-\omega t)+kr}\) ones. Therefore, we initially know that all imaginary terms have to be dropped.

Here we consider the fundamental wave (symbolized by the index \(^{(1L)}\)) more generally, containing possibly different \(\omega \) components. The back effect is described by the equation (for our case, where only the "zero" product was taken into account)

$$\begin{aligned} R^L_{\alpha \beta }(\mathbf {h_{\omega }^{(1)N}}) =- R^{NL}_{\alpha \beta }(\mathbf {h_{\omega }^{(1)},h^{(0)}}), \end{aligned}$$
(A-30)

i.e., for each \(\omega \)-line separately. The zero harmonic effects are considered integrally, meaning that they represent the accumulated contribution of all \(\omega \) components.

The results obtained in this Appendix are utilized in Sect. 4.

We consider those equations, which involve \(H^{(0)}_{00}\), and \(H^{(1)}_{22}\).

On the left-hand side, we have:

$$\begin{aligned} R^L_{00}(\mathbf {h^{(21)}}) = \frac{\partial \varGamma ^{(1)\alpha }_{00}}{\partial x^{\alpha }}-\frac{\partial \varGamma ^{(1)\alpha }_{0\alpha }}{\partial x^0}+\varGamma ^{(0)\alpha }_{00}\varGamma ^{(1)\beta }_{\alpha \beta }+\varGamma ^{(1)\alpha }_{00}\varGamma ^{(0)\beta }_{\alpha \beta }-\varGamma ^{(0)\alpha }_{0\beta }\varGamma ^{(1)\beta }_{0\alpha }-\varGamma ^{(1)\alpha }_{0\beta }\varGamma ^{(0)\beta }_{0\alpha }.\nonumber \\ \end{aligned}$$
(A-31)

Or

$$\begin{aligned} R^{(21)}_{00} = -\frac{\partial \varGamma ^{(2)2}_{0 2}}{\partial x^0}-\frac{\partial \varGamma ^{(2)3}_{0 3}}{\partial x^0}+\varGamma ^{(0)1}_{00}\varGamma ^{(2)2}_{12}-\varGamma ^{(1)2}_{0,2}\varGamma ^{(1)2}_{02}. \end{aligned}$$
(A-32)

These equation should provide the additional \(t-\) dependence for \(\textbf{H}^{(1)}\) amplitudes. For each \(\omega -\)line the \(r-\) dependence corresponds to the additional time of losses ( \(t_{ad} =r/c\)).

We do not expect any significant modification in their \(r-\) dependence, and thus, we keep them as they were found.

$$\begin{aligned} \varGamma ^{(1)\beta }_{\gamma \tau }=\frac{1}{2}h^{(1L)\alpha \beta }\left( \frac{\partial g^{(0)}_{\alpha \gamma }}{\partial x^\tau }+\frac{\partial g^{(0)}_{\alpha \tau }}{\partial x^\gamma }- \frac{\partial g^{(0)}_{\gamma \tau }}{\partial x^\alpha }\right) - \frac{1}{2}g^{(0)\alpha \beta }\left( \frac{\partial h^{(1L)}_{\alpha \gamma }}{\partial x^\tau }+\frac{\partial h^{(1L)}_{\alpha \tau }}{\partial x^\gamma }- \frac{\partial h^{(1L)}_{\gamma \tau }}{\partial x^\alpha }\right) , \end{aligned}$$

In the calculations below we (as in section 4) follow only the time variation of \(H^{(1)}_{22}\).

$$\begin{aligned} \varGamma ^{(1)\beta }_{\gamma =0@\tau =0} = -\frac{1}{2}h^{(1)1\beta }\frac{\partial g^{(0)}_{00}}{\partial x^1} =-\frac{1}{2r^2}h^{(1)1\beta } = \frac{1}{2r^2}h_1^{\beta (1)} =0. \end{aligned}$$

Continuing we obtain

$$\begin{aligned} \varGamma ^{(1)\beta }_{\gamma =0@\tau =\beta } =\frac{1}{2}h^{(1)\alpha \beta }\left( \frac{\partial g^{(0)}_{\alpha 0}}{\partial x^\beta }- \frac{\partial g^{(0)}_{0\beta }}{\partial x^\alpha }\right) - \frac{1}{2}g^{(0)\beta \beta }\left( \frac{\partial h^{(1)}_{\beta 0}}{\partial x^\beta }+\frac{\partial h^{(1)}_{\beta \beta }}{\partial x^0}- \frac{\partial h^{(1)}_{0\beta }}{\partial x^\beta }\right) , \end{aligned}$$

and,

$$\begin{aligned} \frac{\partial \varGamma ^{(1)\alpha }_{0\alpha }}{\partial x^0} \approx -\frac{1}{2}g^{(0)\beta \beta }\frac{\partial ^2 h^{(1)}_{\beta \beta }}{\partial (x^0)^2}. \end{aligned}$$

Since we saw that just (and only) \(h^{(1)}_{22}\) contribute its energy to \(H^{(1)}_{2}\) we get for the same accuracy framework

$$\begin{aligned} \frac{\partial \varGamma ^{(1)\alpha }_{0\alpha }}{\partial x^0} \approx -\frac{1}{2}g^{2(0)}_2\frac{\partial ^2 h^{2(1)}_2}{\partial (x^0)^2} = - \frac{1}{2}\frac{\partial ^2 H^{2(1)}_2}{\partial (x^0)^2}. \end{aligned}$$

The imaginary term disappears in this equation since it has to include also the \(-\omega \) terms.

Continuing we find

$$\begin{aligned}{} & {} \varGamma ^{(0)\alpha }_{00}\varGamma ^{(1)\beta }_{\alpha \beta } = \varGamma ^{(0)1}_{00}\varGamma ^{(1)\beta }_{1,\beta } = 0.\\{} & {} \varGamma ^{(1)\alpha }_{00}\varGamma ^{(0)\beta }_{\alpha \beta } = 0. \end{aligned}$$

Also

$$\begin{aligned}{} & {} -\varGamma ^{(0)\alpha }_{0,\beta }\varGamma ^{(1)\beta }_{0,\alpha } \approx 0.\\{} & {} -\varGamma ^{(1)\alpha }_{0,\beta }\varGamma ^{(0)\beta }_{0,\alpha } = \left( \right) *\left( \varGamma ^{(1)\alpha }_{0,\beta }\right) \approx 0. \end{aligned}$$

Finally,

$$\begin{aligned} R^L_{00}(\mathbf {h^{(21)}}) = \frac{1}{2}\frac{\partial ^2 H^{2(1)}_2}{\partial (x^0)^2}. \end{aligned}$$

For the right-hand side

$$\begin{aligned} R^{NL(2)}_{ 00} = -\frac{\partial \varGamma ^{(2)2}_{0 2}}{\partial x^0}-\frac{\partial \varGamma ^{(2)3}_{0 3}}{\partial x^0}+\varGamma ^{(0)1}_{00}\varGamma ^{(2)2}_{12}-\varGamma ^{(1)2}_{02}\varGamma ^{(1)2}_{02}, \end{aligned}$$
(A-33)

we obtain as follows.

$$\begin{aligned}{} & {} \varGamma ^{(2)\beta =2}_{\gamma =0@\tau =2} = \frac{1}{2}h^{(1L)2\eta }\left( \frac{\partial h^{(0)}_{\eta 0}}{\partial x^2}+\frac{\partial h^{(0)}_{\eta 2}}{\partial x^0}- \frac{\partial h^{(0)}_{02}}{\partial x^\eta }\right) \\{} & {} \qquad + \frac{1}{2}h^{(0)2\eta }\left( \frac{\partial h^{(1L)}_{\eta 0}}{\partial x^2}+\frac{\partial h^{(1L)}_{\eta 2}}{\partial x^0}- \frac{\partial h^{(1L)}_{02}}{\partial x^\eta }\right) .\\{} & {} \qquad \varGamma ^{(2)\beta =3}_{\gamma =0@\tau =3} = \frac{1}{2}h^{(1L)3\eta }\left( \frac{\partial h^{(0)}_{\eta 0}}{\partial x^3}+\frac{\partial h^{(0)}_{\eta 3}}{\partial x^0}- \frac{\partial h^{(0)}_{03}}{\partial x^\eta }\right) \\{} & {} \qquad + \frac{1}{2}h^{(0)3\eta }\left( \frac{\partial h^{(1L)}_{\eta 0}}{\partial x^3}+\frac{\partial h^{(1L)}_{\eta 3}}{\partial x^0}- \frac{\partial h^{(1L)}_{03}}{\partial x^\eta }\right) \end{aligned}$$

Keeping only the main (in a proper \(r-\) region) polarization components, obtain

$$\begin{aligned}{} & {} \varGamma ^{(2)\beta =2}_{\gamma =0@\tau =2} = \frac{1}{2}h^{(1L)23}\frac{\partial h^{(0)}_{32}}{\partial x^0} + \frac{1}{2}h^{(0)23}\frac{\partial h^{(1L)}_{32}}{\partial x^0}.\\{} & {} \varGamma ^{(2)\beta =3}_{\gamma =0@\tau =3} = \frac{1}{2}h^{(1L)23}\frac{\partial h^{(0)}_{32}}{\partial x^0} + \frac{1}{2}h^{(0)23}\frac{\partial h^{(1L)}_{32}}{\partial x^0}.\\{} & {} \varGamma ^{(2)2}_{0 2} = h^{(1L)23}\frac{\partial h^{(0)}_{32}}{\partial x^0} = h^{(1L)23}\frac{\partial h^{(0)}_{32}}{\partial x^0} \sim h^{(1L)22}\frac{\partial h^{(0)}_{00}}{\partial x^0}.\\{} & {} \varGamma ^{(2)3}_{0 3} = h^{(1L)23}\frac{\partial h^{(0)}_{32}}{\partial x^0} \sim h^{(1L)22}\frac{\partial h^{(0)}_{00}}{\partial x^0}. \end{aligned}$$

Thus, we have

$$\begin{aligned} R^{NL(2)}_{ 00} \approx -2\frac{\partial }{\partial x^0}\left( h^{(1L)22}\frac{\partial h^{(0)}_{00}}{\partial x^0}\right) +\varGamma ^{(0)1}_{00}\varGamma ^{(1)2}_{12}-\varGamma ^{(0)2}_{02}\varGamma ^{(1)2}_{02}. \end{aligned}$$
(A-34)

Further,

$$\begin{aligned} \varGamma ^{(0)1}_{00}\approx 0, \end{aligned}$$

and finally,

$$\begin{aligned} R^{NL(2)}_{ 00} \approx -2\frac{\partial }{\partial x^0}\left( h^{(1L)22}\frac{\partial h^{(0)}_{00}}{\partial x^0}\right) = -\frac{1}{r^2}\frac{\partial }{\partial x^0}\left( h^{2(1L)}_2\frac{\partial h^{(0)}_{00}}{\partial x^0}\right) \sim \left( \frac{1}{r^5}\right) \end{aligned}$$
(A-35)

Emphasize, however, that this equation is not completely accurate (as it contains \(h^{(1L)22}\) in the right-hand side instead of \(h^{(1)22}\)), and \(H^{(0)}\) represents the static field calculated without "back" corrections. Nevertheless, for our purposes, we accept this inaccuracy.

It is important to note that the right-hand side of this equation exhibits a \(\frac{1}{r^3}\) dependence.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurwich, I. The Non-vanishing Imprint of Gravitational Waves as the Result of Its Nonlinear Evolution in Space. Found Phys 53, 82 (2023). https://doi.org/10.1007/s10701-023-00714-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00714-w

Keywords

Navigation