Skip to main content
Log in

A simple analytic example of the gravitational wave memory effect

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We report an analytical example of the gravitational wave memory effect in exact plane wave spacetimes. A square pulse profile is chosen which gives rise to a curved wave region sandwiched between two flat Minkowski spacetimes. Working in the Brinkmann coordinate system, we solve the geodesic equations exactly in all three regions. Issues related to the continuity and differentiability of the solutions at the boundaries of the pulse are addressed. The evolution of the geodesic separation reveals displacement and velocity memory effects with quantitative estimates depending on initial values and the amplitude and width of the pulse. The deformation caused by the pulse on a ring of particles is then examined in detail. Formation of caustics is found in both scenarios, i.e. evolution of separation for a pair of geodesics and shape deformation of a ring of particles—a feature consistent with previous work on geodesic congruences in this spacetime. In summary, our analysis provides a useful illustration of memory effects involving closed-form exact expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data, or the data will not be deposited. [Author’s comment: This article is entirely theoretical. No data from any other source is used anywhere, in the paper. Hence, no extra data needs to be deposited.]

Notes

  1. For Maxwell fields, we have a third term in H(uxy) like \(B(u)(x^2+y^2)\).

  2. All the plots in this article are generated using Mathematica 12.

References

  1. M. Favata, Class. Qtm. Grav. 27, 084036 (2010). https://doi.org/10.1088/0264-9381/27/8/084036

    Article  ADS  Google Scholar 

  2. L. Bieri, D. Garfinkle, N. Yunes, arXiv:1710.03272 ( 2017)

  3. M. Hübner, P. Lasky, E. Thrane, Phys. Rev. D 104, 023004 (2021). https://doi.org/10.1103/PhysRevD.104.023004

    Article  ADS  Google Scholar 

  4. K. Aggarwal et al., (NANOGrav) Astrophys. J. 889, 38 (2020). https://doi.org/10.3847/1538-4357/ab6083

  5. Y.B. Zel’dovich, A.G. Polnarev, Sov. Astron 18, 17 (1974)

    ADS  Google Scholar 

  6. V.B. Braginsky, L.P. Grishchuk, Sov. Phys. JETP 62, 427 (1985)

    ADS  Google Scholar 

  7. D. Christodoulou, Phys. Rev. Lett. 67, 1486 (1991). https://doi.org/10.1103/PhysRevLett.67.1486

    Article  ADS  MathSciNet  Google Scholar 

  8. L. Bieri, D. Garfinkle, Phys. Rev. D 89, 084039 (2014). https://doi.org/10.1103/PhysRevD.89.084039

    Article  ADS  Google Scholar 

  9. A. Tolish, L. Bieri, D. Garfinkle, R.M. Wald, Phys. Rev. D 90, 044060 (2014). https://doi.org/10.1103/PhysRevD.90.044060

    Article  ADS  Google Scholar 

  10. A. Tolish, R.M. Wald, Phys. Rev. D 89, 064008 (2014). https://doi.org/10.1103/PhysRevD.89.064008

    Article  ADS  Google Scholar 

  11. T. Mädler, J. Winicour, Class. Quant. Grav. 33, 175006 (2016). https://doi.org/10.1088/0264-9381/33/17/175006

    Article  ADS  Google Scholar 

  12. T. Mädler, J. Winicour, Class. Quant. Grav. 34, 115009 (2017). https://doi.org/10.1088/1361-6382/aa6ca8

    Article  ADS  Google Scholar 

  13. A. Strominger, A. Zhiboedov, J. High Energy Phys. 01, 86 (2016). https://doi.org/10.1007/JHEP01(2016)086

    Article  ADS  Google Scholar 

  14. A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory (2017) arXiv:1703.05448 [hep-th]

  15. G. Compère, Asymptotically flat spacetimes, In Advanced Lectures on General Relativity (Springer International Publishing, Cham, 2019) pp. 81–102, https://doi.org/10.1007/978-3-030-04260-8_3

  16. S. Hou, Z.-H. Zhu, JHEP 01, 083, https://doi.org/10.1007/JHEP01(2021)083

  17. S. Hou, Z.-H. Zhu, Chin. Phys. C 45, 023122 (2021). https://doi.org/10.1088/1674-1137/abd087

    Article  ADS  Google Scholar 

  18. S. Tahura, D.A. Nichols, A. Saffer, L.C. Stein, K. Yagi, Phys. Rev. D 103, 104026 (2021). https://doi.org/10.1103/PhysRevD.103.104026

    Article  ADS  Google Scholar 

  19. S. Hou, T. Zhu, Z.-H. Zhu, Phys. Rev. D 105, 024025 (2022). https://doi.org/10.1103/PhysRevD.105.024025

    Article  ADS  Google Scholar 

  20. H. Bondi, F.A.E. Pirani, I. Robinson, Proc. Roy. Soc. Lond. A 251, 519 (1959)

    Article  ADS  Google Scholar 

  21. A. Peres, Phys. Rev. Lett. 3, 571 (1959). https://doi.org/10.1103/PhysRevLett.3.571

    Article  ADS  Google Scholar 

  22. P.-M. Zhang, C. Duval, G.W. Gibbons, P.A. Horvathy, Phys. Lett. B 772, 743 (2017). https://doi.org/10.1016/j.physletb.2017.07.050

    Article  ADS  MathSciNet  Google Scholar 

  23. P.-M. Zhang, C. Duval, G.W. Gibbons, P.A. Horvathy, Phys. Rev. D 96, 064013 (2017). https://doi.org/10.1103/PhysRevD.96.064013

    Article  ADS  MathSciNet  Google Scholar 

  24. P. M. Zhang, C. Duval, G. W. Gibbons, P. A. Horvathy, JCAP 05, 030, https://doi.org/10.1088/1475-7516/2018/05/030

  25. P.-M. Zhang, C. Duval, P.A. Horvathy, Class. Qtm. Grav. 35, 065011 (2018). https://doi.org/10.1088/1361-6382/aaa987

    Article  ADS  Google Scholar 

  26. P.M. Zhang, M. Elbistan, G.W. Gibbons, P.A. Horvathy, Gen. Rel. Grav. 50, 107 (2018). https://doi.org/10.1007/s10714-018-2430-0

    Article  ADS  Google Scholar 

  27. I. Chakraborty, S. Kar, Phys. Rev. D 101, 064022 (2020). https://doi.org/10.1103/PhysRevD.101.064022

    Article  ADS  MathSciNet  Google Scholar 

  28. B. Cvetković, D. Simić, Eur. Phys. J. C 82, 127 (2022)

    Article  ADS  Google Scholar 

  29. M. O’Loughlin, H. Demirchian, Phys. Rev. D 99, 024031 (2019). https://doi.org/10.1103/PhysRevD.99.024031

    Article  ADS  MathSciNet  Google Scholar 

  30. S. Bhattacharjee, S. Kumar, A. Bhattacharyya, Phys. Rev. D 100, 084010 (2019). https://doi.org/10.1103/PhysRevD.100.084010

    Article  ADS  MathSciNet  Google Scholar 

  31. A.I. Harte, T.D. Drivas, Phys. Rev. D 85, 124039 (2012). https://doi.org/10.1103/PhysRevD.85.124039

    Article  ADS  Google Scholar 

  32. H. Stephani, D. Kramer, M. A. H. MacCallum, C. Hoenselaers, E. Herlt, Exact solutions of Einstein’s field equations (Cambridge Univ. Press, Cambridge, England, 2003), https://doi.org/10.1017/CBO9780511535185

  33. J. B. Griffiths, J. Podolsky, Exact Space-Times in Einstein’s General Relativity (Cambridge Univ. Press, Cambridge, England, 2009), https://doi.org/10.1017/CBO9780511635397

  34. N. Rosen, Phys. Z. Sowjetunion 12, 366 (1937)

    Google Scholar 

  35. H.W. Brinkmann, Math. Ann. 94, 119 (1925). https://doi.org/10.1007/BF01208647

    Article  MathSciNet  Google Scholar 

  36. M. Blau, Plane Waves and Penrose Limits, Lecture notes (Version of November 15, 2011)

  37. I. Chakraborty, S. Kar, Phys. Lett. B 808, 135611 (2020). https://doi.org/10.1016/j.physletb.2020.135611

    Article  MathSciNet  Google Scholar 

  38. S. Siddhant, I. Chakraborty, S. Kar, Eur. Phys. J. C 81, 350 (2021). https://doi.org/10.1140/epjc/s10052-021-09118-4

    Article  ADS  Google Scholar 

  39. E.E. Flanagan, A.M. Grant, A.I. Harte, D.A. Nichols, Phys. Rev. D 101, 104033 (2020). https://doi.org/10.1103/PhysRevD.101.104033

    Article  ADS  MathSciNet  Google Scholar 

  40. A.K. Divakarla, B.F. Whiting, Phys. Rev. D 104, 064001 (2021). https://doi.org/10.1103/PhysRevD.104.064001

    Article  ADS  Google Scholar 

  41. R. Penrose, Rev. Mod. Phys. 37, 215 (1965). https://doi.org/10.1103/RevModPhys.37.215

    Article  ADS  Google Scholar 

  42. R. Shaikh, S. Kar, A. DasGupta, Eur. Phys. J. Plus 129, 90 (2014)

    Article  Google Scholar 

  43. S. Kar, S. SenGupta, Pramana 69, 49 (2007)

    Article  ADS  Google Scholar 

  44. B.F. Schutz, M. Tinto, Mon. Not. R. Astron. Soc. 224, 131 (1987). https://doi.org/10.1093/mnras/224.1.131

    Article  ADS  Google Scholar 

  45. G. M. Shore, JHEP 2018(12), 133, https://doi.org/10.1007/JHEP12(2018)133

  46. I. Chakraborty, Phys. Rev. D 105, 024063 (2022). https://doi.org/10.1103/PhysRevD.105.024063

    Article  ADS  Google Scholar 

Download references

Funding

I. C. is supported by University Grants Commission, Government of India through a Senior Research Fellowship with Reference ID: 523711.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, I., Kar, S. A simple analytic example of the gravitational wave memory effect. Eur. Phys. J. Plus 137, 418 (2022). https://doi.org/10.1140/epjp/s13360-022-02593-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02593-y

Navigation