Skip to main content
Log in

Role of the Electromagnetic Vacuum in the Transition from Classical to Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We revisit the nonrelativistic problem of a bound, charged particle subject to the random zero-point radiation field (zpf), with the purpose of revealing the mechanism that takes it from the initially classical description to the final quantum-mechanical one. The combined effect of the zpf and the radiation reaction force results, after a characteristic time lapse, in the loss of the initial conditions and the concomitant irreversible transition of the dynamics to a stationary regime controlled by the field. In this regime, the canonical variables xp become expressed in terms of the dipolar response functions to a set of field modes. A proper ordering of the response coefficients leads to the matrix representation of quantum mechanics, as was proposed in the early days of the theory, and to the basic commutator \(\left[ {\hat{x}},{\hat{p}}\right] =i\hbar \). Further, the connection with the corresponding Fokker–Planck equation valid in the Markov approximation, allows one to obtain the (nonrelativistic) radiative corrections of qed. These results reaffirm the essentially electrodynamic and stochastic nature of the quantum phenomenon, as proposed by stochastic electrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marshall, T.W.: Random electrodynamics. Proc. R. Soc. A 276, 475 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Marshall, T.W.: Statistical electrodynamics. Math. Proc. Camb. Philos. Soc. 61, 537 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Boyer, T.H.: Quantum zero-point energy and long-range forces. Ann. Phys. 56, 474 (1970)

    Article  ADS  Google Scholar 

  4. Boyer, T.H.: Random electrodynamics: the theory of classical electrodynamics with classical electromagnetic zero-point radiation. Phys. Rev. D 11, 790 (1975)

    Article  ADS  Google Scholar 

  5. Boyer, T.H.: A brief survey of stochastic electrodynamics. In: Barut, A.O. (ed.) Foundations of Radiation Theory and Quantum Electrodynamics. Plenum Press, New York (1980)

    Google Scholar 

  6. Santos, E.: The harmonic oscillator in stochastic electrodynamics. Nuovo Cimento B 19B, 57–89 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  7. Santos, E.: The physical meaning of quantization. Found. Phys. 22, 371–379 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. de la Peña, L., Cetto, A.M.: The quantum harmonic oscillator revisited: a new look from stochastic electrodynamics. J. Math. Phys. 20, 469 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  9. França, H.M., Marshall, T.W.: Excited states in stochastic electrodynamics. Phys. Rev. A 38, 3258 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  10. de la Peña, L., Cetto, A.M.: The Quantum Dice. An Introduction to Stochastic Electrodynamics. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  11. Cole, D., Zou, Yi.: Perturbation analysis and simulation study of the effects of phase on the classical hydrogen atom interacting with circularly polarized electromagnetic radiation. J. Sci. Comput. 20, 1 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cole, D., Zou, Yi.: Subharmonic resonance behavior for the classical hydrogen atomic system. J. Sci. Comput. 39, 27 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nieuwenhuizen, T.M.: On the stability of classical orbits of the hydrogen ground state in stochastic electrodynamics. Entropy 18, 135 (2016)

    Article  ADS  Google Scholar 

  14. Nieuwenhuizen, T.M.: Stochastic electrodynamics: lessons from regularizing the harmonic oscillator. Atoms 7, 29 (2019)

    Article  ADS  Google Scholar 

  15. Pesquera, L.: Etude des Équations Differentiellas Stochastiques Non Markoviennes et Applications a l’Electrodynamique Stochastique. Ph.D. Thesis, Université de Paris VI (1980)

  16. Ch-W Huang, W., Batelaan, H.: Discrete excitation spectrum of a classical harmonic oscillator in zero-point radiation. Found. Phys. 45, 333 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Ch-W Huang, W., Batelaan, H.: Testing quantum coherence in stochastic electrodynamics with squeezed Schrödinger cat states. Atoms 7, 42 (2019)

    Article  ADS  Google Scholar 

  18. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079 (1966)

    Article  ADS  Google Scholar 

  19. Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985)

    Book  MATH  Google Scholar 

  20. Nelson, E.: Review of stochastic mechanics. JPCS 361, 012011 (2012)

    Google Scholar 

  21. de la Peña, L.: New formulation of stochastic theory and quantum mechanics. J. Math. Phys. 10, 1620 (1969)

    Article  ADS  MATH  Google Scholar 

  22. de la Peña, L., Cetto, A.M.: Stochastic theory for classical and quantum mechanical systems. Found. Phys. 5, 355 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  23. de la Peña, L., Cetto, A.M., Valdés-Hernández, A.: The Emerging Quantum. The Physics Behind Quantum Mechanics. Springer Verlag, Berlin (2015)

    MATH  Google Scholar 

  24. de la Peña, L., Cetto, A.M., Valdés-Hernández, A.: Connecting two stochastic theories that lead to quantum mechanics. Front. Phys. 8, 162 (2020). https://doi.org/10.3389/fphy.2020.00162

    Article  Google Scholar 

  25. Egg, M.: Quantum ontology without speculation. Eur. J. Philos. Sci. 11, 32 (2021). https://doi.org/10.1007/s13194-020-00346-1

    Article  MathSciNet  Google Scholar 

  26. Cushing, J.T.: Quantum Mechanics. Historical Contingency and the Copenhagen Hegemony. University of Chicago Press, Chicago (1994)

    MATH  Google Scholar 

  27. Cetto, A.M., de la Peña, L.: Electromagnetic vacuum-particle interaction as the source of quantum phenomena. Found. Phys. Lett. 4, 476 (1991)

    Article  Google Scholar 

  28. Cetto, A.M., de la Peña, L.: On the physical origin of the quantum operator formalism. Quantum Stud.: Math. Found. (2021). https://doi.org/10.1007/s40509-020-00241-7

    Article  MathSciNet  Google Scholar 

  29. Klyatskin, V.: Stochastic Equations Through the Eye of the Physicist. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  30. de la Peña, L., Cetto, A.M.: The harmonic oscillator in a random electromagnetic field: Schrödinger’s equation and radiative corrections. Rev. Mex. Fis. 25, 1–21 (1976)

    Google Scholar 

  31. Olsen, J.G., McDonald, K.T.: Classical lifetime of a Bohr atom. https://www.physics.princeton.edu/~mcdonald/examples/orbitdecay.pdf (2017)

  32. Frisch, U.: Wave propagation in random media. In: Bharucha-Reid, A.T. (ed.) Probabilistic Methods in Applied Mathematics. Academic Press, New York (1968)

    Google Scholar 

  33. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  34. Prabhu, N.U.: Stochastic Processes. MacMillan, New York (1965)

    MATH  Google Scholar 

  35. Cetto, A.M., de la Peña, L., Valdés-Hernández, A.: Atomic radiative corrections without QED: role of the zero-point field. Rev. Mex. Fis. 59, 433 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Welton, Th.A.: Some observable effects of the quantum-mechanical fluctuations of the electromagnetic field. Phys. Rev. 74, 1157 (1948)

    Article  ADS  MATH  Google Scholar 

  37. Milonni, P.W.: An Introduction to Quantum Optics and Quantum Fluctuations. Oxford University Press, Oxford (2019)

    Book  Google Scholar 

  38. de la Peña, L., Cetto, A.M., Valdés-Hernández, A.: How fast is a quantum jump? Phys. Lett. A 384, 126880 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Valdés-Hernández, A., de la Peña, L., Cetto, A.M.: Bipartite entanglement induced by a common background (zero-point) radiation field. Found. Phys. 41, 843 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Valdés-Hernández, A.: Investigación del origen del enredamiento cuántico desde la perspectiva de la electrodinámica estocástica lineal. PhD Thesis, Universidad Nacional Autónoma de México (2010)

  41. Cetto, A.M., de la Peña, L., Valdés-Hernández, A.: Emergence of quantization: the spin of the electron. JPCS 504, 012007 (2014)

    Google Scholar 

  42. Khrennikov, A.: Quantum mechanics from statistical mechanics of classical fields. J. Phys.: Conf. Ser. 70, 012009 (2007)

    Google Scholar 

  43. Bush, J.W., Oza, A.U.: Hydrodynamic quantum analogs. Rep. Prog. Phys. 84, 017001 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Andrea Valdés-Hernández for her critical revision of the manuscript. We also gratefully acknowledge valuable comments from two anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana María Cetto.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetto, A.M., de la Peña, L. Role of the Electromagnetic Vacuum in the Transition from Classical to Quantum Mechanics. Found Phys 52, 84 (2022). https://doi.org/10.1007/s10701-022-00605-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00605-6

Keywords

Navigation