Skip to main content
Log in

The Schrödinger Equation, the Zero-Point Electromagnetic Radiation, and the Photoelectric Effect

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

A Schrödinger type equation for a mathematical probability amplitude Ψ(x,t) is derived from the generalized phase space Liouville equation valid for the motion of a microscopic particle, with mass M and charge e, moving in a potential V(x). The particle phase space probability density is denoted Q(x,p,t), and the entire system is immersed in the “vacuum” zero-point electromagnetic radiation. We show, in the first part of the paper, that the generalized Liouville equation is reduced to a simpler Liouville equation in the equilibrium limit where the small radiative corrections cancel each other approximately. This leads us to a simpler Liouville equation that will facilitate the calculations in the second part of the paper. Within this second part, we address ourselves to the following task: Since the Schrödinger equation depends on \(\hbar \), and the zero-point electromagnetic spectral distribution, given by \(\rho _{0}{(\omega )} = \hbar \omega ^{3}/2 \pi ^{2} c^{3}\), also depends on \(\hbar \), it is interesting to verify the possible dynamical connection between ρ 0(ω) and the Schrödinger equation. We shall prove that the Planck’s constant, present in the momentum operator of the Schrödinger equation, is deeply related with the ubiquitous zero-point electromagnetic radiation with spectral distribution ρ 0(ω). For simplicity, we do not use the hypothesis of the existence of the L. de Broglie matter-waves. The implications of our study for the standard interpretation of the photoelectric effect are discussed by considering the main characteristics of the phenomenon. We also mention, briefly, the effects of the zero-point radiation in the tunneling phenomenon and the Compton’s effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • E.P. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  ADS  MATH  Google Scholar 

  • J.E. Moyal, Quantum mechanics as a statistical theory. Proc. Cambridge Philos. Soc. 45, 99 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • G. Manfredi, S. Mola, M.R. Feix, Quantum systems that follow classical dynamics. Eur. J. Phys. 14, 101 (1993)

    Article  Google Scholar 

  • S. Hayakawa, Atomism and cosmology. Prog. Theor. Phys. p. 532, 1965. Supplement, Commemoration Issue for the 30th Anniversary of the Meson Theory by Dr. H. Yukawa. See Section 4 .

  • K. Dechoum, H.M. França, C.P. Malta, Classical aspects of the Pauli-Schrödinger equation. Phys. Lett. A. 248, 93 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • E. Schrödinger, Collected Papers on Wave Mechanics (Blackie, London, 1929)

    Google Scholar 

  • A. Einstein, O. Stern, Some arguments in favor of the acceptation of molecular agitation at the absolute zero. Ann. Phys. 40, 551 (1913)

    Article  Google Scholar 

  • T.W. Marshall, Random electrodynamics. Proc. Roy. Soc. A. 276, 475 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A.H. Safavi-Naeini, et al., Observation of quantum motion of a nanomechanical resonator. Phys. Rev. Lett. 108, 033602 (2012)

    Article  ADS  Google Scholar 

  • H.M. França, T.W. Marshall, Excited states in stochastic electrodynamics. Phys. Rev. A. 38, 3258 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  • T.H. Boyer, General connection between random electrodynamics and quantum electrodynamics for free electromagnetic fields and for dipole oscillators. Phys. Rev. D. 11, 809 (1975)

    Article  ADS  Google Scholar 

  • L. de la Peña, A.M. Cetto, The Quantum Dice: an Introduction to Stochastic Electrodynamics (Kluwer Academic Publishers, Dordrecht, 1996)

    Book  Google Scholar 

  • L. de la Peña-Auerbach, A.M. Cetto, Derivation of quantum mechanics from stochastic electrodynamics. Jour. Math. Phys. 18, 1612 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  • L. de la Peña, A.M. Cetto, A. Valdés-Hernandéz, Quantum behavior derived as an essentially stochastic phenomenon. Phys. Scr. T151, 014008 (2012)

    Article  ADS  Google Scholar 

  • L. de la Peña, A.M. Cetto, A. Valdés-Hernandéz, The Emerging Quantum. The Physics Behind Quantum Mechanics Springer International Publishing Switzerland, 2015. ISBN 978-3-319-07892-2. See Section 4.7, Appendix A.

  • H.M. França, H. Franco, C.P. Malta, A stochastic electrodynamics interpretation of spontaneous transitions in the hydrogen atom. Eur. J. Phys. 18, 343 (1997)

    Article  Google Scholar 

  • J. Dalibard, J. Dupont-Roc, C. Cohen-Tannoudji, Vacuum fluctuation and radiation reaction: identification of their respective contributions. J. Physique. 43, 1617 (1982)

    Article  Google Scholar 

  • J. Dalibard, J. Dupont-Roc, C. Cohen-Tannoudji, Vacuum fluctuation and radiation reaction: identification of their respective contributions. J. Physique. 45, 637 (1984)

    Article  MathSciNet  Google Scholar 

  • A.A. Sokolov, V.S. Tumanov, The uncertainty relation and fluctuation theory. Sov. Phys. JETP. 3, 958 (1957)

    MATH  Google Scholar 

  • L. Schiff, Quantum Mechanics, 3rd edn. (McGraw-Hill Companies, 1968)

  • P.W. Milonni, Radiation reaction and the nonrelativistic theory of the electron. Phys. Lett. A. 82, 225 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  • P.W. Milonni, Why spontaneous emission? Am. J. Phys. 52, 340 (1984). See in particular the Section 2.

    Article  ADS  Google Scholar 

  • L. de la Peña, A. Valdés-Hernández, A.M. Cetto, Quantum mechanics as an emergent property of ergodic systems embedded in the zero-point radiation field. Found. Phys. 39, 1240 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M.O. Scully, M. Sargent III, The concept of the photon, Physics Today, March/1972, 38.

  • W.E. Lamb Jr., M.O. Scully. Polarization matter and radiation (Jubilee volume in honor of Alfred Kastler). The photoelectric effect without photons (Univ. de France, Paris, 1969), pp. 363–369.

  • R. Kidd, J. Ardini, A. Anton, Evolution of the modern photon. Am. J. Phys. 57, 27 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  • H.M. França, T.W. Marshall, E. Santos, Spontaneous emission in confined space according to stochastic electrodynamics. Phys. Rev. A. 45, 6336 (1992)

    Article  ADS  Google Scholar 

  • R. Blanco, K. Dechoum, H.M. França, E. Santos, Casimir interaction between a microscopic dipole oscillator and macroscopic solenoid. Phys. Rev. A. 57, 724 (1998)

    Article  ADS  Google Scholar 

  • R. Blanco, H.M. França, E. Santos, Classical interpretation of the Debye law for the specific heat of solids. Phys. Rev. 43, 693 (1991)

    Article  ADS  Google Scholar 

  • E. Merzbacher, Quantum Mechanics (Wiley, New York, 1970)

    MATH  Google Scholar 

  • A. Landé, From dualism to unity in Quantum Physics (Cambridge University Press, Cambridge, 1960). Chapter 4.

  • A. Pais, Max born’s statistical interpretation of quantum mechanics. Science. 218, 1193 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S. Sulcs, B.C. Gilbert, C.F. Osborne, On the interference of fullerenes and other massive particles. Found. Phys. 32, 1251 (2002)

    Article  Google Scholar 

  • M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, A. Zellinger, Wave-particle duality of C 60 molecules. Nature. 401, 680 (1999)

    Article  ADS  Google Scholar 

  • A.J. Faria, H.M. França, R.C. Sponchiado, Tunneling as a classical escape rate induced by the vacuum zero-point radiation. Found. Phys. 36, 307 (2006)

    Article  ADS  MATH  Google Scholar 

  • A.V. Barranco, H.M. França, Einstein-Ehrenfest’s radiation theory and Compton-Debye’s kinematics. Found. of Phys. Lett. 5, 25 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Coraci P. Malta, Prof. L. de la Peña, Prof. A. M. Cetto, and Prof. Geraldo F. Burani for valuable comments and J. S. Borges for the help in the preparation of the manuscript. We also acknowledge Fundação de Amparo Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. França.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

França, H.M., Kamimura, A. & Barreto, G.A. The Schrödinger Equation, the Zero-Point Electromagnetic Radiation, and the Photoelectric Effect. Braz J Phys 46, 184–191 (2016). https://doi.org/10.1007/s13538-016-0398-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-016-0398-3

Keywords

Navigation