Skip to main content
Log in

The Heisenberg Limit at Cosmological Scales

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

For an observation time equal to the universe age, the Heisenberg principle fixes the value of the smallest measurable mass at \(m_\mathrm{H}=1.35 \times 10^{-69}\) kg and prevents to probe the masslessness for any particle using a balance. The corresponding reduced Compton length to \(m_\mathrm{H}\) is , and represents the length limit beyond which masslessness cannot be proved using a metre ruler. In turns, is equated to the luminosity distance \(d_\mathrm{H}\) which corresponds to a red shift \(z_\mathrm{H}\). When using the Concordance-Model parameters, we get \(d_\mathrm{H} = 8.4\) Gpc and \(z_\mathrm{H}=1.3\). Remarkably, \(d_\mathrm{H}\) falls quite short to the radius of the observable universe. According to this result, tensions in cosmological parameters could be nothing else but due to comparing data inside and beyond \(z_\mathrm{H}\). Finally, in terms of quantum quantities, the expansion constant \(H_0\) reveals to be one order of magnitude above the smallest measurable energy, divided by the Planck constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The International Astronomical Union has adopted the terminology Hubble-Lemaître constant [12]. We recall the contributions by Humason [13,14,15].

  2. Herein, we use indeterminacy when we address massiveness as opposed to masslessness and uncertainty when we refer to measurement accuracy. Principle is used when referring to the general concept rather than an estimate.

  3. Photons were emitted at decoupling about 370.000 years after the Big Bang; photons by galaxies some hundred million years later.

  4. De Broglie estimated the photon mass below \(10^{-53}\) kg through group velocity dispersion [27, 28]. After one century of painstaking experiments, the Particle Data Group (PDG) [29] sets the upper limit just one order of magnitude below, at \(m < 10^{-18}\) eV c\(^{-2}\) or \(1.8 \times 10^{-54}\) kg in the solar wind, but see [30] for a critical assessment. Recently, limits up to \(3.9\times 10^{-51}\) kg were established estimating dispersion in Fast Radio Bursts (FRBs) [31], more stringent than other attempts [32, 33]; for a review, see [34]. The best laboratory test—based on Coulomb’s law—showed an upper limit of \(1.6 \times 10^{-50}\) kg [35], while a space mission was conceived targeting dispersion in the very-low radio frequencies [36].

  5. Massive gravity was first proposed by Fierz and Pauli [37], and later in different contexts including alternatives to dark matter [38]. For gravitons, the PDG [29] sets the upper limit at \(6 \times 10^{-32}\) eV or \(1.1 \times 10^{-67}\) kg, obtained from gravitational lensing [39].

  6. The Taylor expansion of a generic function f(z) is

    $$f(z)=\sum _{i=0}^\infty {c_i} {z^i,}$$
    (3)

    where \(c_i=f^{(i)}(0)/i!\), whereas the (nm) Padé approximant of f(z) is defined as rational polynomial by

    $$P_{n,m}(z)=\dfrac{\displaystyle {\sum _{i=0}^{n}a_i z^i}}{1+\displaystyle {\sum _{j=1}^{m}b_j z^j}}.$$
    (4)
  7. The check consists in fitting observational data with the Padé approximants. The Padé-approximant based cosmography reproduces observed distances with analytical models. The latter include a set of cosmological parameters which determine the coefficients of the approximants. In Fig. 1, we have used Concordance-Model parameters (\(\Omega _\mathrm{m} = 0.3\) and \(\Omega _{\Lambda } = 0.7\)), and thereby we have identified the coefficients \(q_0\) and \(j_0\). We could have departed from the Concordance-Model parameters and then obtained other values of the Heisenberg radius, but without relevant consequences for our work.

  8. The radius of the observable universe is usually expressed as comoving distance, 14.3 Gpc, roughly at \(z=1100\). For a flat universe, \(\Omega _\mathrm{k} = 0\), the luminosity distance is \((1+z)\) times the comoving distance, achieving thereby extremely large values for increasing z.

  9. McCrea [49] used the term uncertainty for pointing out the consequences of the finitude of the speed of light on the observability of the universe and did not address the Heisenberg principle in any manner. In [50,51,52], the origin of probability in cosmology, the relations to inflation, the boundaries of knowledge are addressed. The latter issue is closest to our work. Further discussions on the limits of knowledge, possibly in connection with Gödel incompleteness theorem, go well beyond the aims of this paper.

References

  1. Capozziello, S., Benetti, M., Spallicci, A.D.A.M.: Addressing the cosmological \({H}_0\) tension by the Heisenberg uncertainty. Found. Phys. 50, 893 (2020)

    Article  ADS  Google Scholar 

  2. Di Valentino, E., Anchordoqui, L.A., Akarsu, Ö., Ali-Haimoud, Y., Amendola, L., Arendse, N., Asgari, M., Ballardini, M., Basilakos, S., Battistelli, E., et al.: Cosmology intertwined II: the Hubble constant tension. Astropart. Phys. 131, 102605 (2021)

    Article  Google Scholar 

  3. Di Valentino, E., Mena, O., Pan, S., Visinelli, L., Yang, W., Melchiorri, A., Mota, D.F., Riess, A.G., Silk, J.: In the realm of the Hubble tension—a review of solutions. Class. Q. Grav. 38, 153001 (2021)

    Article  ADS  Google Scholar 

  4. Gurzadyan, V.G., Stepanian, A.: Hubble tension and absolute constraints on the local Hubble parameter. Astron. Astrophys. 653, A145 (2021)

    Article  ADS  Google Scholar 

  5. Moussa, M., Shababi, H., Rahaman, A., Kumar Dey, U.: Minimal length, maximal momentum and stochastic gravitational waves spectrum generated from cosmological QCD phase transition. Phys. Lett. B. 820, 136488 (2005)

    Article  MathSciNet  Google Scholar 

  6. Perivolaropoulos, L., Skara, F.: Challenges for \(\Lambda \)CDM: an update (2021), arXiv:2105.05208 [astro-ph.CO]

  7. Yang, W., Di Valentino, E., Pan, S., Mena, O.: Emergent dark energy, neutrinos and cosmological tensions. Phys. Dark En. 31, 100762 (2021)

    Article  Google Scholar 

  8. Vagnozzi, S.: Consistency tests of \(\Lambda \)CDM from the early integrated Sachs-Wolfe effect: implications for early-time new physics and the Hubble tension. Phys. Rev. D 104, 063524 (2021)

    Article  ADS  Google Scholar 

  9. Aghababaei, S., Moradpour, H., Vagenas, E.C.: Hubble tension bounds the GUP and EUP parameters. Eur. Phys. J. Plus 136, 997 (2021)

    Article  Google Scholar 

  10. Petronikolou, M., Basilakos, S., Saridakis, E.N.: Alleviating H\(_0\) tension in Horndeski gravity (2021), arXiv:2110.01338 [gr-qc]

  11. Riess, A., Yuan, W., Macri, L.M., Scolnic, D., Brout, D., Casertano, S., Jones, D.O., Murakami, Y., Breuval, L., Brink, T.G. et al.: A comprehensive measurement of the local value of the Hubble constant with 1 km/s/Mpc uncertainty from the Hubble Space Telescope and the SH0ES Team (2021), arXiv:2112.04510 [astro-ph.CO]

  12. International Astronomical Union, Resolution B4 on a suggested renaming of the Hubble law, https://www.iau.org/news/pressreleases/detail/ia%u1812/ (2018), XXX General Assembly, August 2018, Wien

  13. Humason, M.L.: The large radial velocity of N.G.C. 7619. Proc. Natl. Acad. Sci. USA 15, 168 (1929)

    Article  ADS  Google Scholar 

  14. Humason, M.L.: The velocity-distance relation among extra-galactic nebulae. Astrophys. J. 74, 35 (1931)

    Article  ADS  Google Scholar 

  15. Hubble, E., Humason, M.L.: The velocity-distance relation among extra-galactic nebulae. Astrophys. J. 74, 43 (1931)

    Article  ADS  Google Scholar 

  16. Scharff Goldhaber, A., Nieto, M.M.: Photon and graviton mass limits. Rev. Mod. Phys. 82, 939 (2010)

    Article  ADS  Google Scholar 

  17. Schrödinger, E.: The Earth’s and the Sun’s permanent magnetic fields in the unitary field theory. Proc. R. Irish Acad. A 49, 135 (1943)

    MathSciNet  MATH  Google Scholar 

  18. de Broglie, L.: Rayonnement noir et quanta de lumière. J. Phys. et Radium 3, 422 (1922)

    Article  Google Scholar 

  19. de Broglie, L.: Nouvelles Recherches sur la Lumière, vol. 411 of Actualités Scientifiques et Industrielles (Hermann & \(\text{C}^{{\rm ie}}\), Paris, 1936)

  20. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschr. Phys. 43, 172 (1927)

    Article  ADS  Google Scholar 

  21. Ballentine, L.E.: The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 42, 358 (1970)

    Article  ADS  Google Scholar 

  22. Busch, P.: On the energy-time uncertainty relation. Part I: dynamical time and time indeterminacy. Found. Phys. 20, 1 (1990)

    Article  ADS  Google Scholar 

  23. Busch, P.: On the energy-time uncertainty relation. Part II: pragmatic time versus energy indeterminacy. Found. Phys. 20, 33 (1990)

    Article  ADS  Google Scholar 

  24. Kobe, D.H., Aguilera-Navarro, V.C.: Derivation of the energy-time uncertainty relation. Phys. Rev. A 50, 933 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  25. Busch, P., Heinonen, T., Lahti, P.: Heisenberg’s uncertainty principle. Phys. Rep. 452, 155 (2007)

    Article  ADS  Google Scholar 

  26. Busch, P.: Chap. The energy-time uncertainty relation. In: Muga, J.G., Sala Mayato, R., Egusquiza, I.L. (eds.) Time in Quantum Mechanics. Lecture Notes in Physics, vol. 734, p. 73. Springer-Verlag, Berlin (2008)

  27. de Broglie, L.: Ondes et quanta. Comptes Rendus Hebd. Séances Acad. Sci. Paris 177, 507 (1923)

    Google Scholar 

  28. de Broglie, L.: Recherches sur la théorie des quanta (Masson & \({{\rm C}}^{{\rm ie}}\), Paris, 1924), Doctorate thesis (Dir. P. Langevin) Université de Paris, Sorbonne

  29. Zyla, P.A., Particle Data Group: Review of particle physics. Progr. Theor. Exp. Phys. 2020, 083C01 (2020)

  30. Retinò, A., Spallicci, A.D.A.M., Vaivads, A.: Solar wind test of the de Broglie-Proca massive photon with Cluster multi-spacecraft data. Astropart. Phys. 82, 49 (2016)

    Article  ADS  Google Scholar 

  31. Wang, H., Miao, X., Shao, L.: Bounding the photon mass with cosmological propagation of fast radio bursts. Phys. Lett. B. 820, 136596 (2021). https://doi.org/10.1016/j.physletb.2021.136596

  32. Bonetti, L., Ellis, J., Mavromatos, N.E., Sakharov, A.S., Sarkisian-Grinbaum, E.K., Spallicci, A.D.A.M.: Photon mass limits from fast radio bursts. Phys. Lett. B 757, 548 (2016)

    Article  ADS  Google Scholar 

  33. Bonetti, L., Ellis, J., Mavromatos, N.E., Sakharov, A.S., Sarkisian-Grinbaum, E.K., Spallicci, A.D.A.M.: FRB 121102 casts new light on the photon mass. Phys. Lett. B 768, 326 (2017)

    Article  ADS  Google Scholar 

  34. Wei, J.-J., Wu, X.-F.: Testing fundamental physics with astrophysical transients. Front. Phys. 16, 44300 (2021)

    Article  ADS  Google Scholar 

  35. Williams, E.R., Faller, J.E., Hill, H.A.: New experimental test of Coulomb’s law: A laboratory upper limit on the photon rest mass. Phys. Rev. Lett. 26, 721 (1971)

    Article  ADS  Google Scholar 

  36. Bentum, M.J., Bonetti, L., Spallicci, A.D.A.M.: Dispersion by pulsars, magnetars, fast radio bursts and massive electromagnetism at very low radio frequencies. Adv. Space Res. 59, 736 (2017)

    Article  ADS  Google Scholar 

  37. Fierz, M., Pauli, W.: On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. Lond. A 173, 211 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  38. Capozziello, S., Basini, G., De Laurentis, M.: Deriving the mass of particles from extended theories of gravity in LHC era. Eur. Phys. J. C 71, 1679 (2011)

    Article  ADS  Google Scholar 

  39. Choudury, S.R., Joshi, G.C., Mahajan, S., McKellar, B.H.J.: Probing large distance higher dimensional gravity from lensing data. Astropart. Phys. 21, 559 (2004)

    Article  ADS  Google Scholar 

  40. Bonetti, L., dos Santos Filho, L.R., Helayël-Neto, J.A., Spallicci, A.D.A.M.: Effective photon mass from Super and Lorentz symmetry breaking. Phys. Lett. B 764, 203 (2017)

    Article  ADS  Google Scholar 

  41. Bonetti, L., dos Santos Filho, L.R., Helayël-Neto, J.A., Spallicci, A.D.A.M.: Photon sector analysis of Super and Lorentz symmetry breaking: effective photon mass, bi-refringence and dissipation. Eur. Phys. J. C 78, 811 (2018)

    Article  ADS  Google Scholar 

  42. Helayël-Neto, J.A., Spallicci, A.D.A.M.: Frequency variation for in vacuo photon propagation in the Standard-Model Extension. Eur. Phys. J. C 79, 590 (2019)

    Article  ADS  Google Scholar 

  43. Spallicci, A.D.A.M., Helayël-Neto, J.A., López-Corredoira, M., Capozziello, S.: Cosmology and photon frequency shift induced by the Standard-Model Extension. Eur. Phys. J. C. 81, 4 (2021)

    Article  ADS  Google Scholar 

  44. Riess, A.G., Casertano, S., Yuan, W., Macri, L.M., Scolnic, D.: Large Magellanic cloud Cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond \(\Lambda \)CDM. Astrophys. J. 876, 85 (2019)

    Article  ADS  Google Scholar 

  45. Aghanim, N. et al.: Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020), Erratum: Astron. Astrophys. 652, C4 (2021)

  46. Amanullah, R., Lidman, C., Rubin, D., Aldering, G., Astier, P., Barbary, K., Burns, M.S., Conley, A., Dawson, K.S., Deustua, S.E., et al.: Spectra and light curves of six type Ia Supernovae at 0.511 \(< \text{ z } < 1.12\) and the Union2 compilation. Astrophys. J. 716, 712 (2010)

    Article  ADS  Google Scholar 

  47. Capozziello, S., D’Agostino, R., Luongo, O.: Extended gravity cosmography. Int. J. Mod. Phys. D 28, 1930016 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  48. Capozziello, S., D’Agostino, R., Luongo, O.: High-redshift cosmography: auxiliary variables versus Padé polynomials. Mon. Not. R. Astron. Soc. 494, 2576 (2020)

    Article  ADS  Google Scholar 

  49. McCrea, W.H.: The interpretation of cosmology. Nature 186, 1035 (1960)

    Article  ADS  Google Scholar 

  50. Albrecht, A., Phillips, D.: Origin of probabilities and their application to the multiverse. Phys. Rev. D 90, 123514 (2014)

    Article  ADS  Google Scholar 

  51. Sahlén, M.: Chap. On probability and cosmology: inference beyond data? In: Chamcham, K., Silk, J., Barrow, J., Saunders, S. (eds.) The Philosophy of Cosmology, p. 429. Cambridge University Press, Cambridge (2017)

  52. Beltrame, P.: Scienza e fede. se i quanti gettano luce sulla teologia. https://www.avvenire.it/agora/pagine/scienza-e-fede-se-i-quanti-gettano-luce-sulla-teologia-paolo-beltrame, Avvenire, 4 March 2021

Download references

Acknowledgements

ADAMS acknowledges the Erasmus+ programme for visiting the Università di Napoli, SC the Université d’Orléans and Campus France for the hospitality. SC and MB acknowledge the Istituto Nazionale di Fisica Nucleare (INFN), sezione di Napoli, iniziative specifiche MOONLIGHT2 and QGSKY. The authors thank O. Luongo (Frascati) for discussions. Finally, the authors are indebted to the referee for the detailed comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro D. A. M. Spallicci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spallicci, A.D.A.M., Benetti, M. & Capozziello, S. The Heisenberg Limit at Cosmological Scales. Found Phys 52, 23 (2022). https://doi.org/10.1007/s10701-021-00531-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00531-z

Keywords

Navigation