Skip to main content
Log in

Testing fundamental physics with astrophysical transients

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Explosive astrophysical transients at cosmological distances can be used to place precision tests of the basic assumptions of relativity theory, such as Lorentz invariance, the photon zero-mass hypothesis, and the weak equivalence principle (WEP). Signatures of Lorentz invariance violations (LIV) include vacuum dispersion and vacuum birefringence. Sensitive searches for LIV using astrophysical sources such as gamma-ray bursts, active galactic nuclei, and pulsars are discussed. The most direct consequence of a nonzero photon rest mass is a frequency dependence in the velocity of light propagating in vacuum. A detailed representation of how to obtain a combined severe limit on the photon mass using fast radio bursts at different redshifts through the dispersion method is presented. The accuracy of the WEP has been well tested based on the Shapiro time delay of astrophysical messengers traveling through a gravitational field. Some caveats of Shapiro delay tests are discussed. In this article, we review and update the status of astrophysical tests of fundamental physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Gambini and J. Pullin, Nonstandard optics from quantum space-time, Phys. Rev. D 59(12), 124021 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Alfaro, H. A. Morales-Tecotl, and L. F. Urrutia, Loop quantum gravity and light propagation, Phys. Rev. D 65(10), 103509 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  3. G. Amelino-Camelia and D. V. Ahluwalia, Relativity in spacetimes with short-distance structure governed by an observer-independent (Planckian) length scale, Int. J. Mod. Phys. D 11(01), 35 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. G. Amelino-Camelia, Special treatment, Nature 418(6893), 34 (2002)

    Article  ADS  MATH  Google Scholar 

  5. J. Kowalski-Glikman, and S. Nowak, Doubly special relativity theories as different bases of K-Poincaré algebra, Phys. Lett. B 539(1–2), 126 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. J. Magueijo and L. Smolin, Generalized Lorentz invariance with an invariant energy scale, Phys. Rev. D 67(4), 044017 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  7. V. A. Kostelecký and S. Samuel, Spontaneous breaking of Lorentz symmetry in string theory, Phys. Rev. D 39(2), 683 (1989)

    Article  ADS  Google Scholar 

  8. V. Alan Kostelecký and R. Potting, CPT and strings, Nucl. Phys. B 359(2–3), 545 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. V. A. Kostelecký and R. Potting, CPT, strings, and meson factories, Phys. Rev. D 51(7), 3923 (1995)

    Article  ADS  Google Scholar 

  10. D. Mattingly, Modern tests of Lorentz invariance, Living Rev. Relativ. 8(1), 5 (2005)

    Article  ADS  MATH  Google Scholar 

  11. R. Bluhm, Overview of the standard model extension: Implications and phenomenology of Lorentz violation, Special Relativity 702, 191 (2006)

    Article  MATH  Google Scholar 

  12. G. Amelino-Camelia, Quantum-spacetime phenomenology, Living Rev. Relativ. 16(1), 5 (2013)

    Article  ADS  Google Scholar 

  13. J. D. Tasson, What do we know about Lorentz invariance? Rep. Prog. Phys. 77(6), 062901 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  14. V. A. Kostelecký and N. Russell, Data tables for Lorentz and CPT violation, Rev. Mod. Phys. 83(1), 11 (2011)

    Article  ADS  Google Scholar 

  15. V. A. Kostelecký and M. Mewes, Astrophysical tests of Lorentz and CPT violation with Photons, Astrophys. J. 689(1), L1 (2008)

    Article  ADS  Google Scholar 

  16. G. Amelino-Camelia, J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, and S. Sarkar, Tests of quantum gravity from observations of γ-ray bursts, Nature 393, 763 (1998)

    Article  ADS  Google Scholar 

  17. T. G. Pavlopoulos, Are we observing Lorentz violation in gamma ray bursts? Phys. Lett. B 625(1–2), 13 (2005)

    Article  ADS  Google Scholar 

  18. J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, A. S. Sakharov, and E. K. G. Sarkisyan, Robust limits on Lorentz violation from gamma-ray bursts, Astropart. Phys. 25(6), 402 (2006)

    Article  ADS  Google Scholar 

  19. U. Jacob and T. Piran, Lorentz-violation-induced arrival delays of cosmological particles, J. Cosmol. Astropart. Phys. 01, 031 (2008)

    Article  ADS  Google Scholar 

  20. V. A. Kostelecký and M. Mewes, Electrodynamics with Lorentz-violating operators of arbitrary dimension, Phys. Rev. D 80(1), 015020 (2009)

    Article  ADS  Google Scholar 

  21. A. A. Abdo, M. Ackermann, M. Arimoto, et al., Fermi observations of high-energy gamma-ray emission from GRB 080916C, Science 323(5922), 1688 (2009)

    Article  ADS  Google Scholar 

  22. A. A. Abdo, M. Ackermann, M. Ajello, et al., A limit on the variation of the speed of light arising from quantum gravity effects, Nature 462(7271), 331 (2009)

    Article  ADS  Google Scholar 

  23. Z. Chang, Y. Jiang, and H. N. Lin, A unified constraint on the Lorentz invariance violation from both short and long GRBs, Astropart. Phys. 36(1), 47 (2012)

    Article  ADS  Google Scholar 

  24. R. J. Nemiroff, R. Connolly, J. Holmes, and A. B. Kostinski, Bounds on spectral dispersion from Fermi-detected gamma ray bursts, Phys. Rev. Lett. 108(23), 231103 (2012)

    Article  ADS  Google Scholar 

  25. V. Vasileiou, A. Jacholkowska, F. Piron, J. Bolmont, C. Couturier, J. Granot, F. W. Stecker, J. Cohen-Tanugi, and F. Longo, Constraints on Lorentz invariance violation from Fermi — Large area telescope observations of gamma-ray bursts, Phys. Rev. D 87(12), 122001 (2013)

    Article  ADS  Google Scholar 

  26. J. Ellis and N. E. Mavromatos, Probes of Lorentz violation, Astropart. Phys. 43, 50 (2013)

    Article  ADS  Google Scholar 

  27. F. Kislat and H. Krawczynski, Search for anisotropic Lorentz invariance violation with γ-rays, Phys. Rev. D 92(4), 045016 (2015)

    Article  ADS  Google Scholar 

  28. S. Zhang and B. Q. Ma, Lorentz violation from gamma-ray bursts, Astropart. Phys. 61, 108 (2015)

    Article  ADS  Google Scholar 

  29. J. J. Wei, B. B. Zhang, L. Shao, X. F. Wu, and P. Meszaros, A new test of Lorentz invariance violation: The spectral lag transition of GRB 160625B, Astrophys. J. 834(2), L13 (2017)

    Article  ADS  Google Scholar 

  30. J. J. Wei, X. F. Wu, B. B. Zhang, L. Shao, P. Meszaros, and V. A. Kostelecky, Constraining anisotropic Lorentz violation via the spectral-lag transition of GRB 160625B, Astrophys. J. 842(2), 115 (2017)

    Article  ADS  Google Scholar 

  31. J. J. Wei and X. F. Wu, A further test of Lorentz violation from the rest-frame spectral lags of gamma-ray bursts, Astrophys. J. 851(2), 127 (2017)

    Article  ADS  Google Scholar 

  32. J. Ellis, R. Konoplich, N. E. Mavromatos, L. Nguyen, A. S. Sakharov, and E. K. Sarkisyan-Grinbaum, Robust constraint on Lorentz violation using Fermi-LAT gamma-ray burst data, Phys. Rev. D 99(8), 083009 (2019)

    Article  ADS  Google Scholar 

  33. V. A. Acciari, S. Ansoldi, L. A. Antonelli, A. Arbet Engels, D. Baack, et al., Bounds on Lorentz invariance violation from magic observation of GRB 190114C, Phys. Rev. Lett. 125(2), 021301 (2020)

    Article  ADS  Google Scholar 

  34. S. D. Biller, A. C. Breslin, J. Buckley, M. Catanese, M. Carson, D. A. Carter-Lewis, M. F. Cawley, D. J. Fegan, J. P. Finley, J. A. Gaidos, A. M. Hillas, F. Krennrich, R. C. Lamb, R. Lessard, C. Masterson, J. E. McEnery, B. McKernan, P. Moriarty, J. Quinn, H. J. Rose, F. Samuelson, G. Sembroski, P. Skelton, and T. C. Weekes, Limits to quantum gravity effects on energy dependence of the speed of light from observations of TeV flares in active galaxies, Phys. Rev. Lett. 83(11), 2108 (1999)

    Article  ADS  Google Scholar 

  35. P. Kaaret, Pulsar radiation and quantum gravity, Astron. Astrophys. 345, L32 (1999)

    ADS  Google Scholar 

  36. S. M. Carroll, G. B. Field, and R. Jackiw, Limits on a Lorentz- and parity-violating modification of electrodynamics, Phys. Rev. D 41(4), 1231 (1990)

    Article  ADS  Google Scholar 

  37. D. Colladay and V. A. Kostelecky, Lorentz-violating extension of the standard model, Phys. Rev. D 58(11), 116002 (1998)

    Article  ADS  Google Scholar 

  38. R. J. Gleiser and C. N. Kozameh, Astrophysical limits on quantum gravity motivated birefringence, Phys. Rev. D 64(8), 083007 (2001)

    Article  ADS  Google Scholar 

  39. V. A. Kostelecký and M. Mewes, Cosmological constraints on Lorentz violation in electrodynamics, Phys. Rev. Lett. 87(25), 251304 (2001)

    Article  ADS  Google Scholar 

  40. V. A. Kostelecký and M. Mewes, Sensitive polarimetric search for relativity violations in gamma-ray bursts, Phys. Rev. Lett. 97(14), 140401 (2006)

    Article  ADS  Google Scholar 

  41. V. A. Kostelecký and M. Mewes, Lorentz-violating electrodynamics and the cosmic microwave background, Phys. Rev. Lett. 99(1), 011601 (2007)

    Article  ADS  Google Scholar 

  42. V. A. Kostelecký and M. Mewes, Constraints on relativity violations from gamma-ray bursts, Phys. Rev. Lett. 110(20), 201601 (2013)

    Article  ADS  Google Scholar 

  43. I. G. Mitrofanov, A constraint on canonical quantum gravity? Nature 426, 139 (2003)

    Article  ADS  Google Scholar 

  44. T. Jacobson, S. Liberati, D. Mattingly, and F. W. Stecker, New limits on Planck scale Lorentz violation in QED, Phys. Rev. Lett. 93(2), 021101 (2004)

    Article  ADS  Google Scholar 

  45. Y. Z. Fan, D. M. Wei, and D. Xu, γ-ray burst ultraviolet/optical afterglow polarimetry as a probe of quantum gravity, Mon. Not. R. Astron. Soc. 376(4), 1857 (2007)

    Article  ADS  Google Scholar 

  46. G. Gubitosi, L. Pagano, G. Amelino-Camelia, A. Melchiorri, and A. Cooray, A constraint on Planck-scale modifications to electrodynamics with CMB polarization data, J. Cosmol. Astropart. Phys. 08, 021 (2009)

    Article  ADS  Google Scholar 

  47. P. Laurent, D. Gotz, P. Binetruy, S. Covino, and A. Fernandez-Soto, Constraints on Lorentz invariance violation using integral/IBIS observations of GRB041219A, Phys. Rev. D 83(12), 121301 (2011)

    Article  ADS  Google Scholar 

  48. F. W. Stecker, A new limit on Planck scale Lorentz violation from γ-ray burst polarization, Astropart. Phys. 35(2), 95 (2011)

    Article  ADS  Google Scholar 

  49. K. Toma, S. Mukohyama, D. Yonetoku, T. Murakami, S. Gunji, T. Mihara, Y. Morihara, T. Sakashita, T. Takahashi, Y. Wakashima, H. Yonemochi, and N. Toukairin, Strict limit on CPT violation from polarization of γ-ray bursts, Phys. Rev. Lett. 109(24), 241104 (2012)

    Article  ADS  Google Scholar 

  50. D. Götz, S. Covino, A. Fernandez-Soto, P. Laurent, and Ž. Bošnjak, The polarized gamma-ray burst GRB 061122, Mon. Not. R. Astron. Soc. 431(4), 3550 (2013)

    Article  ADS  Google Scholar 

  51. D. Götz, P. Laurent, S. Antier, S. Covino, P. D’Avanzo, V. D’Elia, and A. Melandri, GRB 140206A: the most distant polarized gamma-ray burst, Mon. Not. R. Astron. Soc. 444, 2776 (2014)

    Article  ADS  Google Scholar 

  52. H. N. Lin, X. Li, and Z. Chang, Gamma-ray burst polarization reduction induced by the Lorentz invariance violation, Mon. Not. R. Astron. Soc. 463(1), 375 (2016)

    Article  ADS  Google Scholar 

  53. F. Kislat and H. Krawczynski, Planck-scale constraints on anisotropic Lorentz and CPT invariance violations from optical polarization measurements, Phys. Rev. D 95(8), 083013 (2017)

    Article  ADS  Google Scholar 

  54. A. S. Friedman, D. Leon, K. D. Crowley, D. Johnson, G. Teply, D. Tytler, B. G. Keating, and G. M. Cole, Constraints on Lorentz invariance and CPT violation using optical photometry and polarimetry of active galaxies BL Lacertae and S5 B 0716 + 714, Phys. Rev. D 99(3), 035045 (2019)

    Article  ADS  Google Scholar 

  55. J. J. Wei, New constraints on Lorentz invariance violation with polarized gamma-ray bursts, Mon. Not. R. Astron. Soc. 485(2), 2401 (2019)

    Article  ADS  Google Scholar 

  56. A. S. Goldhaber and M. M. Nieto, Terrestrial and extraterrestrial limits on the photon mass, Rev. Mod. Phys. 43(3), 277 (1971)

    Article  ADS  Google Scholar 

  57. L. C. Tu, J. Luo, and G. T. Gillies, The mass of the photon, Rep. Prog. Phys. 68(1), 77 (2005)

    Article  ADS  Google Scholar 

  58. L. B. Okun, Photon: History, mass, charge, Acta Phys. Pol. B 37(3), 565 (2006)

    ADS  Google Scholar 

  59. A. S. Goldhaber and M. M. Nieto, Photon and graviton mass limits, Rev. Mod. Phys. 82(1), 939 (2010)

    Article  ADS  Google Scholar 

  60. G. Spavieri, J. Quintero, G. T. Gillies, and M. Rodriguez, A survey of existing and proposed classical and quantum approaches to the photon mass, Eur. Phys. J. D 61(3), 531 (2011)

    Article  ADS  Google Scholar 

  61. B. Lovell, F. L. Whipple, and L. H. Solomon, Relative velocity of light and radio waves in space, Nature 202 (4930), 377 (1964)

    Article  ADS  Google Scholar 

  62. B. Warner and R. E. Nather, Wavelength independence of the velocity of light in space, Nature 222(5189), 157 (1969)

    Article  ADS  Google Scholar 

  63. B. E. Schaefer, Severe limits on variations of the speed of light with frequency, Phys. Rev. Lett. 82(25), 4964 (1999)

    Article  ADS  Google Scholar 

  64. B. Zhang, Y. T. Chai, Y. C. Zou, and X. F. Wu, Constraining the mass of the photon with gamma-ray bursts, J. High Energy Astrophys. 11–12, 20 (2016)

    Article  ADS  Google Scholar 

  65. J. J. Wei, E. K. Zhang, S. B. Zhang, and X. F. Wu, New limits on the photon mass with radio pulsars in the Magellanic clouds, Res. Astron. Astrophys. 17(2), 13 (2017)

    Article  ADS  Google Scholar 

  66. X. F. Wu, S. B. Zhang, H. Gao, J. J. Wei, Y. C. Zou, W. H. Lei, B. Zhang, Z. G. Dai, and P. Meszaros, Constraints on the photon mass with fast radio bursts, Astrophys. J. 822(1), L15 (2016)

    Article  ADS  Google Scholar 

  67. L. Bonetti, J. Ellis, N. E. Mavromatos, A. S. Sakharov, E. K. Sarkisyan-Grinbaum, and A. D. A. M. Spallicci, Photon mass limits from fast radio bursts, Phys. Lett. B 757, 548 (2016)

    Article  ADS  Google Scholar 

  68. L. Bonetti, J. Ellis, N. E. Mavromatos, A. S. Sakharov, E. K. Sarkisyan-Grinbaum, and A. D. A. M. Spallicci, FRB 121102 casts new light on the photon mass, Phys. Lett. B 768, 326 (2017)

    Article  ADS  Google Scholar 

  69. L. Shao and B. Zhang, Bayesian framework to constrain the photon mass with a catalog of fast radio bursts, Phys. Rev. D 95(12), 123010 (2017)

    Article  ADS  Google Scholar 

  70. J. J. Wei and X. F. Wu, Robust limits on photon mass from statistical samples of extragalactic radio pulsars, J. Cosmol. Astropart. Phys. 07, 045 (2018)

    Article  ADS  Google Scholar 

  71. N. Xing, H. Gao, J. J. Wei, Z. Li, W. Wang, B. Zhang, X. F. Wu, and P. Meszaros, Limits on the weak equivalence principle and photon mass with FRB 121102 subpulses, Astrophys. J. 882(1), L13 (2019)

    Article  ADS  Google Scholar 

  72. J. J. Wei and X. F. Wu, Combined limit on the photon mass with nine localized fast radio bursts, Res. Astron. Astrophys. 20(12), 206 (2020)

    Article  ADS  Google Scholar 

  73. E. R. Williams, J. E. Faller, and H. A. Hill, New experimental test of Coulomb’s law: A laboratory upper limit on the photon rest mass, Phys. Rev. Lett. 26(12), 721 (1971)

    Article  ADS  Google Scholar 

  74. M. A. Chernikov, C. J. Gerber, H. R. Ott, and H. J. Gerber, Low-temperature upper limit of the photon mass: Experimental null test of Ampère’s law, Phys. Rev. Lett. 68(23), 3383 (1992)

    Article  ADS  Google Scholar 

  75. R. Lakes, Experimental limits on the photon mass and cosmic magnetic vector potential, Phys. Rev. Lett. 80(9), 1826 (1998)

    Article  ADS  Google Scholar 

  76. A. S. Goldhaber and M. M. Nieto, Problems of the rotating-torsion-balance limit on the photon mass, Phys. Rev. Lett. 91(14), 149101 (2003)

    Article  ADS  Google Scholar 

  77. J. Luo, L. C. Tu, Z. K. Hu, and E. J. Luan, New experimental limit on the photon rest mass with a rotating torsion balance, Phys. Rev. Lett. 90(8), 081801 (2003)

    Article  ADS  Google Scholar 

  78. J. Luo, L. C. Tu, Z. K. Hu, and E. J. Luan, Luo et al. reply, Phys. Rev. Lett. 91(14), 149102 (2003)

    Article  ADS  Google Scholar 

  79. D. D. Lowenthal, Limits on the photon mass, Phys. Rev. D 8(8), 2349 (1973)

    Article  ADS  Google Scholar 

  80. A. Accioly and R. Paszko, Photon mass and gravitational deflection, Phys. Rev. D 69(10), 107501 (2004)

    Article  ADS  Google Scholar 

  81. L. Davis, A. S. Goldhaber, and M. M. Nieto, Limit on the photon mass deduced from pioneer-10 observations of Jupiter’s magnetic field, Phys. Rev. Lett. 35(21), 1402 (1975)

    Article  ADS  Google Scholar 

  82. D. D. Ryutov, The role of finite photon mass in magnetohydrodynamics of space plasmas, Plasma Phys. Contr. Fusion 39(5A), A73 (1997)

    Article  ADS  Google Scholar 

  83. D. D. Ryutov, Using plasma physics to weigh the photon, Plasma Phys. Contr. Fusion 49(12B), B429 (2007)

    Article  ADS  Google Scholar 

  84. A. Retinò, A. D. A. M. Spallicci, and A. Vaivads, Solar wind test of the de Broglie-Proca massive photon with Cluster multi-spacecraft data, Astropart. Phys. 82, 49 (2016)

    Article  ADS  Google Scholar 

  85. Y. Yamaguchi, A composite theory of elementary particles, Prog. Theor. Phys. Suppl. 11, 1 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. G. V. Chibisov, Astrophysical upper limits on the photon rest mass, Sov. Phys. Usp. 19(7), 624 (1976)

    Article  ADS  Google Scholar 

  87. E. Adelberger, G. Dvali, A. Gruzinov, Photon-mass bound destroyed by vortices, Phys. Rev. Lett. 98, 010402 (2007)

    Article  ADS  Google Scholar 

  88. P. Pani, V. Cardoso, L. Gualtieri, E. Berti, and A. Ishibashi, Black-hole bombs and photon-mass bounds, Phys. Rev. Lett. 109(13), 131102 (2012)

    Article  ADS  Google Scholar 

  89. Y. P. Yang and B. Zhang, Tight constraint on photon mass from pulsar spindown, Astrophys. J. 842(1), 23 (2017)

    Article  ADS  Google Scholar 

  90. C. M. Will, The confrontation between general relativity and experiment, Living Rev. Relativ. 9(1), 3 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. C. M. Will, The confrontation between general relativity and experiment, Living Rev. Relativ. 17(1), 4 (2014)

    Article  ADS  MATH  Google Scholar 

  92. S. B. Lambert and C. Le Poncin-Lafitte, Determining the relativistic parameter γ using very long baseline interferometry, Astron. Astrophys. 499(1), 331 (2009)

    Article  ADS  MATH  Google Scholar 

  93. S. B. Lambert and C. Le Poncin-Lafitte, Improved determination of γ by VLBI, Astron. Astrophys. 529, A70 (2011)

    Article  ADS  Google Scholar 

  94. B. Bertotti, L. Iess, and P. Tortora, A test of general relativity using radio links with the Cassini spacecraft, Nature 425(6956), 374 (2003)

    Article  ADS  Google Scholar 

  95. I. I. Shapiro, Fourth test of general relativity, Phys. Rev. Lett. 13(26), 789 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  96. M. J. Longo, New precision tests of the Einstein equivalence principle from Sn1987a, Phys. Rev. Lett. 60(3), 173 (1988)

    Article  ADS  Google Scholar 

  97. L. M. Krauss and S. Tremaine, Test of the weak equivalence principle for neutrinos and photons, Phys. Rev. Lett. 60(3), 176 (1988)

    Article  ADS  Google Scholar 

  98. H. Gao, X. F. Wu, and P. Meszaros, Cosmic transients test Einstein’s equivalence principle out to GeV energies, Astrophys. J. 810(2), 121 (2015)

    Article  ADS  Google Scholar 

  99. J. J. Wei, H. Gao, X. F. Wu, and P. Meszaros, Testing Einstein’s Equivalence Principle With Fast Radio Bursts, Phys. Rev. Lett. 115(26), 261101 (2015)

    Article  ADS  Google Scholar 

  100. X. F. Wu, H. Gao, J. J. Wei, P. Meszaros, B. Zhang, Z. G. Dai, S. N. Zhang, and Z. H. Zhu, Testing Einstein’s weak equivalence principle with gravitational waves, Phys. Rev. D 94(2), 024061 (2016)

    Article  ADS  Google Scholar 

  101. C. Yang, Y. C. Zou, Y. Y. Zhang, B. Liao, and W. H. Lei, Testing the Einstein’s equivalence principle with polarized gamma-ray bursts, Mon. Not. R. Astron. Soc. 469(1), L36 (2017)

    Article  ADS  Google Scholar 

  102. J. J. Wei and X. F. Wu, Precision test of the weak equivalence principle from gamma-ray burst polarization, Phys. Rev. D 99(10), 103012 (2019)

    Article  ADS  Google Scholar 

  103. L. Smolin, How far are we from the quantum theory of gravity? arXiv: hep-th/0303185 (2003)

  104. C. Rovelli, Loop quantum gravity, Living Rev. Relativ. 1(1), 1 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. L. Burderi, A. Sanna, T. Di Salvo, L. Amati, G. Amelino-Camelia, et al., ESA Voyage 2050 white paper — GrailQuest: Hunting for atoms of space and time hidden in the wrinkle of space-time, arXiv: 1911.02154 (2019)

  106. J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, A. S. Sakharov, and E. K. G. Sarkisyan, Corrigendum to “Robust limits on Lorentz violation from gamma-ray bursts” [Astropart. Phys. 25, 402 (2006)], Astropart. Phys. 29(2), 158 (2008)

    Article  ADS  Google Scholar 

  107. J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, and A. S. Sakharov, Quantum-gravity analysis of gamma-ray bursts using wavelets, Astron. Astrophys. 402(2), 409 (2003)

    Article  ADS  MATH  Google Scholar 

  108. S. E. Boggs, C. B. Wunderer, K. Hurley, and W. Coburn, Testing Lorentz Invariance with GRB 021206, Astrophys. J. 611(2), L77 (2004)

    Article  ADS  Google Scholar 

  109. M. Rodriguez Martinez, T. Piran, Y. Oren, GRB 051221A and tests of Lorentz symmetry, J. Cosmol. Astropart. Phys. 05, 017 (2006)

    Article  ADS  Google Scholar 

  110. J. Bolmont, A. Jacholkowska, J. L. Atteia, F. Piron, and G. Pizzichini, Study of time lags in HETE-2 γ-ray bursts with redshift: Search for astrophysical effects and a quantum gravity signature, Astrophys. J. 676(1), 532 (2008)

    Article  ADS  Google Scholar 

  111. R. Lamon, N. Produit, and F. Steiner, Study of Lorentz violation in INTEGRAL gamma-ray bursts, Gen. Relativ. Gravit. 40(8), 1731 (2008)

    Article  ADS  MATH  Google Scholar 

  112. Z. Xiao and B. Q. Ma, Constraints on Lorentz invariance violation from gamma-ray burst GRB090510, Phys. Rev. D 80(11), 116005 (2009)

    Article  ADS  Google Scholar 

  113. L. Shao, Z. Xiao, and B. Q. Ma, Lorentz violation from cosmological objects with very high energy photon emissions, Astropart. Phys. 33(5–6), 312 (2010)

    Article  ADS  Google Scholar 

  114. H. Xu and B. Q. Ma, Light speed variation from gamma-ray bursts, Astropart. Phys. 82, 72 (2016)

    Article  ADS  Google Scholar 

  115. H. Xu and B. Q. Ma, Light speed variation from gamma ray burst GRB 160509A, Phys. Lett. B 760, 602 (2016)

    Article  ADS  Google Scholar 

  116. H. Xu and B. Q. Ma, Regularity of high energy photon events from gamma ray bursts, J. Cosmol. Astropart. Phys. 01, 050 (2018)

    Article  ADS  Google Scholar 

  117. Y. Liu and B. Q. Ma, Light speed variation from gamma ray bursts: Criteria for low energy photons, Eur. Phys. J. C 78(10), 825 (2018)

    Article  ADS  Google Scholar 

  118. V. A. Acciari, S. Ansoldi, et al. [MAGIC Collaboration], Teraelectronvolt emission from the γ-ray burst GRB 190114C, Nature 575(7783), 455 (2019)

    Article  ADS  Google Scholar 

  119. M. Biesiada and A. Piorkowska, Lorentz invariance violation-induced time delays in GRBs in different cosmological models, Class. Quantum Gravity 26(12), 125007 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  120. Y. Pan, Y. Gong, S. Cao, H. Gao, and Z. H. Zhu, Constraints on the Lorentz invariance violation with gamma-ray bursts via a Markov chain Monte Carlo approach, Astrophys. J. 808(1), 78 (2015)

    Article  ADS  Google Scholar 

  121. X. B. Zou, H. K. Deng, Z. Y. Yin, and H. Wei, Model-independent constraints on Lorentz invariance violation via the cosmographic approach, Phys. Lett. B 776, 284 (2018)

    Article  ADS  Google Scholar 

  122. Y. Pan, J. Qi, S. Cao, T. Liu, Y. Liu, S. Geng, Y. Lian, and Z. H. Zhu, Model-independent constraints on Lorentz invariance violation: Implication from updated gamma-ray burst observations, Astrophys. J. 890(2), 169 (2020)

    Article  ADS  Google Scholar 

  123. T. N. Ukwatta, K. S. Dhuga, M. Stamatikos, C. D. Dermer, T. Sakamoto, E. Sonbas, W. C. Parke, L. C. Maximon, J. T. Linnemann, P. N. Bhat, A. Eskandarian, N. Gehrels, A. U. Abeysekara, K. Tollefson, and J. P. Norris, The lag-luminosity relation in the GRB source frame: An investigation with Swift BAT bursts, Mon. Not. R. Astron. Soc. 419(1), 614 (2012)

    Article  ADS  Google Scholar 

  124. M. G. Bernardini, G. Ghirlanda, S. Campana, S. Covino, R. Salvaterra, J. L. Atteia, D. Burlon, G. Calderone, P. D’Avanzo, V. D’Elia, G. Ghisellini, V. Heussaff, D. Lazzati, A. Melandri, L. Nava, S. D. Vergani, and G. Tagliaferri, Comparing the spectral lag of short and long gamma-ray bursts and its relation with the luminosity, Mon. Not. R. Astron. Soc. 446(2), 1129 (2015)

    Article  ADS  Google Scholar 

  125. Z. Chang, X. Li, H. N. Lin, Y. Sang, P. Wang, and S. Wang, Constraining Lorentz invariance violation from the continuous spectra of short gamma-ray bursts, Chin. Phys. C 40(4), 045102 (2016)

    Article  ADS  Google Scholar 

  126. L. Shao, B. B. Zhang, F. R. Wang, X. F. Wu, Y. H. Cheng, X. Zhang, B. Y. Yu, B. J. Xi, X. Wang, H. X. Feng, M. Zhang, and D. Xu, A new measurement of the spectral lag of gamma-ray bursts and its implications for spectral evolution behaviors, Astrophys. J. 844(2), 126 (2017)

    Article  ADS  Google Scholar 

  127. R. J. Lu, Y. F. Liang, D. B. Lin, J. Lu, X. G. Wang, H. J. Lu, H. B. Liu, E. W. Liang, and B. Zhang, A comprehensive analysis of Fermi gamma-ray burst data (IV): Spectral lag and its relation to Ep evolution, Astrophys. J. 865(2), 153 (2018)

    Article  ADS  Google Scholar 

  128. J. Albert, E. Aliu, et al. [MAGIC Collaboration], Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope, Phys. Lett. B 668(4), 253 (2008)

    Article  ADS  Google Scholar 

  129. M. Martínez and M. Errando, A new approach to study energy-dependent arrival delays on photons from astrophysical sources, Astropart. Phys. 31(3), 226 (2009)

    Article  ADS  Google Scholar 

  130. H. Abdalla, F. Aharonian, F. A. Benkhali, E. O. Angüner, M. Arakawa, et al., The 2014 TeV γ-ray flare of MRK 501 seen with H.E.S.S.: Temporal and spectral constraints on lorentz invariance violation, Astrophys. J. 870(2), 93 (2019)

    Article  ADS  Google Scholar 

  131. F. Aharonian, A. G. Akhperjanian, U. Barres de Almeida, et al., Limits on an energy dependence of the speed of light from a flare of the active galaxy PKS 2155-304, Phys. Rev. Lett. 101(17), 170402 (2008)

    Article  ADS  Google Scholar 

  132. A. Abramowski, F. Acero, et al. [H.E.S.S. Collaboration], Search for Lorentz invariance breaking with a likelihood fit of the PKS 2155-304 flare data taken on MJD 53944, Astropart. Phys. 34(9), 738 (2011)

    Article  ADS  Google Scholar 

  133. N. Otte, in: International Cosmic Ray Conference, International Cosmic Ray Conference, Vol. 7 (2011), International Cosmic Ray Conference, Vol. 7, p. 256

    ADS  Google Scholar 

  134. B. Zitzer, in: International Cosmic Ray Conference, International Cosmic Ray Conference, Vol. 33 (2013), International Cosmic Ray Conference, Vol. 33, p. 2768

    Google Scholar 

  135. M. L. Ahnen, S. Ansoldi, et al. [MAGIC Collaboration], Constraining Lorentz invariance violation using the crab pulsar emission observed up to TeV energies by MAGIC, Astrophys. J. Suppl. 232(1), 9 (2017)

    Article  ADS  Google Scholar 

  136. R. C. Myers and M. Pospelov, Ultraviolet modifications of dispersion relations in effective field theory, Phys. Rev. Lett. 90(21), 211601 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  137. W. Coburn and S. E. Boggs, Polarization of the prompt γ-ray emission from the γ-ray burst of 6 December 2002, Nature 423, 415 (2003)

    Article  ADS  Google Scholar 

  138. R. E. Rutledge and D. B. Fox, Re-analysis of polarization in the γ-ray flux of GRB 021206, Mon. Not. R. Astron. Soc. 350(4), 1288 (2004)

    Article  ADS  Google Scholar 

  139. C. Wigger, W. Hajdas, K. Arzner, M. Gudel, and A. Zehnder, Gamma-ray burst polarization: Limits from RHESSI measurements, Astrophys. J. 613(2), 1088 (2004)

    Article  ADS  Google Scholar 

  140. L. Maccione, S. Liberati, A. Celotti, J. G. Kirk, and P. Ubertini, γ-ray polarization constraints on Planck scale violations of special relativity, Phys. Rev. D 78(10), 103003 (2008)

    Article  ADS  Google Scholar 

  141. E. Kalemci, S. E. Boggs, C. Kouveliotou, M. Finger, and M. G. Baring, Search for polarization from the prompt gamma-ray emission of GRB 041219a with SPI on INTEGRAL, Astrophys. J. 75(Suppl. 169) (2007)

  142. S. McGlynn, D. J. Clark, A. J. Dean, L. Hanlon, S. McBreen, D. R. Willis, B. McBreen, A. J. Bird, and S. Foley, Polarisation studies of the prompt gamma-ray emission from GRB 041219a using the spectrometer aboard INTEGRAL, Astron. Astrophys. 466(3), 895 (2007)

    Article  ADS  Google Scholar 

  143. D. Götz, P. Laurent, F. Lebrun, F. Daigne, and Ž. Bošnjak, Variable polarization measured in the prompt emission of GRB 041219a using IBIS on board integral, Astrophys. J. 695(2), L208 (2009)

    Article  ADS  Google Scholar 

  144. D. Yonetoku, T. Murakami, S. Gunji, T. Mihara, K. Toma, T. Sakashita, Y. Morihara, T. Takahashi, N. Toukairin, H. Fujimoto, Y. Kodama, and S. Kubo, Detection of gamma-ray polarization in prompt emission of GRB 100826a, Astrophys. J. 743(2), L30 (2011)

    Article  ADS  Google Scholar 

  145. D. Yonetoku, T. Murakami, S. Gunji, T. Mihara, K. Toma, Y. Morihara, T. Takahashi, Y. Wakashima, H. Yonemochi, T. Sakashita, N. Toukairin, H. Fujimoto, and Y. Kodama, Magnetic structures in gamma-ray burst jets probed by gamma-ray polarization, Astrophys. J. 758(1), L1 (2012)

    Article  ADS  Google Scholar 

  146. H. K. Vedantham, V. Ravi, K. Mooley, D. Frail, G. Hallinan, and S. R. Kulkarni, On associating fast radio bursts with afterglows, Astrophys. J. 824(1), L9 (2016)

    Article  ADS  Google Scholar 

  147. P. K. G. Williams and E. Berger, No precise localization for FRB 150418: Claimed radio transient is AGN variability, Astrophys. J. 821(2), L22 (2016)

    Article  ADS  Google Scholar 

  148. S. Chatterjee, C. J. Law, R. S. Wharton, S. Burke-Spolaor, J. W. T. Hessels, et al., A direct localization of a fast radio burst and its host, Nature 541(7635), 58 (2017)

    Article  ADS  Google Scholar 

  149. J. W. T. Hessels, L. G. Spitler, A. D. Seymour, J. M. Cordes, D. Michilli, et al., FRB 121102 bursts show complex time-frequency structure, Astrophys. J. 876(2), L23 (2019)

    Article  ADS  Google Scholar 

  150. M. J. Bentum, L. Bonetti, and A. D. A. M. Spallicci, Dispersion by pulsars, magnetars, fast radio bursts and massive electromagnetism at very low radio frequencies, Adv. Space Res. 59(2), 736 (2017)

    Article  ADS  Google Scholar 

  151. W. Deng and B. Zhang, Cosmological implications of fast radio burst/gamma-ray burst associations, Astrophys. J. 783(2), L35 (2014)

    Article  ADS  Google Scholar 

  152. L. G. Spitler, P. Scholz, J. W. T. Hessels, S. Bogdanov, A. Brazier, et al., A repeating fast radio burst, Nature 531(7593), 202 (2016)

    Article  ADS  Google Scholar 

  153. S. P. Tendulkar, C. G. Bassa, J. M. Cordes, G. C. Bower, C. J. Law, S. Chatterjee, E. A. K. Adams, S. Bogdanov, S. Burke-Spolaor, B. J. Butler, P. Demorest, J. W. T. Hessels, V. M. Kaspi, T. J. W. Lazio, N. Maddox, B. Marcote, M. A. McLaughlin, Z. Paragi, S. M. Ransom, P. Scholz, A. Seymour, L. G. Spitler, H. J. van Langevelde, and R. S. Wharton, The host galaxy and redshift of the repeating fast radio burst FRB 121102, Astrophys. J. 834(2), L7 (2017)

    Article  ADS  Google Scholar 

  154. B. Marcote, K. Nimmo, J. W. T. Hessels, S. P. Tendulkar, C. G. Bassa, et al., A repeating fast radio burst source localized to a nearby spiral galaxy, Nature 577(7789), 190 (2020)

    Article  ADS  Google Scholar 

  155. K. W. Bannister, A. T. Deller, C. Phillips, et al., A single fast radio burst localized to a massive galaxy at cosmological distance, Science 365(6453), 565 (2019)

    Article  ADS  Google Scholar 

  156. J. X. Prochaska, J. P. Macquart, M. McQuinn, S. Simha, R. M. Shannon, C. K. Day, L. Marnoch, S. Ryder, A. Deller, K. W. Bannister, S. Bhandari, R. Bordoloi, J. Bunton, H. Cho, C. Flynn, E. K. Mahony, C. Phillips, H. Qiu, and N. Tejos, The low density and magnetization of a massive galaxy halo exposed by a fast radio burst, Science 366(6462), 231 (2019)

    Article  ADS  Google Scholar 

  157. V. Ravi, M. Catha, L. D’Addario, S. G. Djorgovski, G. Hallinan, R. Hobbs, J. Kocz, S. R. Kulkarni, J. Shi, H. K. Vedantham, S. Weinreb, and D. P. Woody, A fast radio burst localized to a massive galaxy, Nature 572(7769), 352 (2019)

    Article  ADS  Google Scholar 

  158. J. P. Macquart, J. X. Prochaska, M. McQuinn, K. W. Bannister, S. Bhandari, C. K. Day, A. T. Deller, R. D. Ekers, C. W. James, L. Marnoch, S. Oslowski, C. Phillips, S. D. Ryder, D. R. Scott, R. M. Shannon, and N. Tejos, A census of baryons in the Universe from localized fast radio bursts, Nature 581(7809), 391 (2020)

    Article  ADS  Google Scholar 

  159. J. X. Prochaska and Y. Zheng, Probing galactic haloes with fast radio bursts, Mon. Not. R. Astron. Soc. 485(1), 648 (2019)

    ADS  Google Scholar 

  160. J. Xu and J. L. Han, Extragalactic dispersion measures of fast radio bursts, Res. Astron. Astrophys. 15(10), 1629 (2015)

    Article  ADS  Google Scholar 

  161. R. Luo, K. Lee, D. R. Lorimer, and B. Zhang, On the normalized FRB luminosity function, Mon. Not. R. Astron. Soc. 481(2), 2320 (2018)

    Article  ADS  Google Scholar 

  162. A. M. Hopkins and J. F. Beacom, On the normalization of the cosmic star formation history, Astrophys. J. 651(1), 142 (2006)

    Article  ADS  Google Scholar 

  163. L. X. Li, Star formation history up to z = 7.4: implications for gamma-ray bursts and cosmic metallicity evolution, Mon. Not. R. Astron. Soc. 388(4), 1487 (2008)

    Article  ADS  Google Scholar 

  164. N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, et al, Planck 2018 results, Astron. Astrophys. 641, A6 (2020)

    Article  Google Scholar 

  165. M. Fukugita, C. J. Hogan, and P. J. E. Peebles, The cosmic baryon budget, Astrophys. J. 503(2), 518 (1998)

    Article  ADS  Google Scholar 

  166. R. B. Tully, H. Courtois, Y. Hoffman, and D. Pomarede, The Laniakea supercluster of galaxies, Nature 513(7516), 71 (2014)

    Article  ADS  Google Scholar 

  167. O. Minazzoli, N. K. Johnson-McDaniel, and M. Sakellariadou, Shortcomings of Shapiro delay-based tests of the equivalence principle on cosmological scales, Phys. Rev. D 100(10), 104047 (2019)

    Article  ADS  Google Scholar 

  168. Z. Y. Wang, R. Y. Liu, and X. Y. Wang, Testing the equivalence principle and lorentz invariance with PeV neutrinos from blazar flares, Phys. Rev. Lett. 116(15), 151101 (2016)

    Article  ADS  Google Scholar 

  169. S. Boran, S. Desai, and E. O. Kahya, Constraints on differential Shapiro delay between neutrinos and photons from IceCube-170922A, Eur. Phys. J. C 79(3), 185 (2019)

    Article  ADS  Google Scholar 

  170. R. Laha, Constraints on neutrino speed, weak equivalence principle violation, Lorentz invariance violation, and dual lensing from the first high-energy astrophysical neutrino source TXS 0506 + 056, Phys. Rev. D 100(10), 103002 (2019)

    Article  ADS  Google Scholar 

  171. J. J. Wei, B. B. Zhang, L. Shao, H. Gao, Y. Li, Q. Q. Yin, X. F. Wu, X. Y. Wang, B. Zhang, and Z. G. Dai, Multi-messenger tests of Einstein’s weak equivalence principle and Lorentz invariance with a high-energy neutrino from a flaring blazar, J. High Energy Astrophys. 22, 1 (2019)

    Article  ADS  Google Scholar 

  172. J. J. Wei, X. F. Wu, H. Gao, and P. Meszaros, Limits on the neutrino velocity, Lorentz invariance, and the weak equivalence principle with TeV neutrinos from gamma-ray bursts, J. Cosmol. Astropart. Phys. 08, 031 (2016)

    Article  ADS  Google Scholar 

  173. X. Li, Y. M. Hu, Y. Z. Fan, and D. M. Wei, GRB/GW association: Long-short GRB candidates, time lag, measuring gravitational wave velocity, and testing einstein’s equivalence principle, Astrophys. J. 827(1), 75 (2016)

    Article  ADS  Google Scholar 

  174. B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, et al, Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J. 848(2), L13 (2017)

    Article  ADS  Google Scholar 

  175. M. Liu, Z. Zhao, X. You, J. Lu, and L. Xu, Test of the weak equivalence principle using LIGO observations of GW150914 and Fermi observations of GBM transient 150914, Phys. Lett. B 770, 8 (2017)

    Article  ADS  Google Scholar 

  176. H. Wang, F. W. Zhang, Y. Z. Wang, Z. Q. Shen, Y. F. Liang, X. Li, N. H. Liao, Z. P. Jin, Q. Yuan, Y. C. Zou, Y. Z. Fan, and D. M. Wei, The GW170817/GRB 170817A/AT 2017GFO Association: Some Implications for Physics and Astrophysics, Astrophys. J. 851(1), L18 (2017)

    Article  ADS  Google Scholar 

  177. J. J. Wei, B. B. Zhang, X. F. Wu, H. Gao, P. Meszaros, B. Zhang, Z. G. Dai, S. N. Zhang, and Z. H. Zhu, Multimessenger tests of the weak equivalence principle from GW170817 and its electromagnetic counterparts, J. Cosmol. Astropart. Phys. 11, 035 (2017)

    Article  ADS  Google Scholar 

  178. I. M. Shoemaker and K. Murase, Constraints from the time lag between gravitational waves and gamma rays: Implications of GW170817 and GRB 170817A, Phys. Rev. D 97(8), 083013 (2018)

    Article  ADS  Google Scholar 

  179. S. Boran, S. Desai, E. O. Kahya, and R. P. Woodard, GW170817 falsifies dark matter emulators, Phys. Rev. D 97(4), 041501 (2018)

    Article  ADS  Google Scholar 

  180. L. Yao, Z. Zhao, Y. Han, J. Wang, T. Liu, and M. Liu, Testing the weak equivalence principle with the binary neutron star merger GW 170817: The gravitational contribution of the host galaxy, Astrophys. J. 900(1), 31 (2020)

    Article  ADS  Google Scholar 

  181. C. Sivaram, Constraints on the photon mass and charge and test of equivalence principle from GRB 990123, Bull. Astron. Soc. India 27, 627 (1999)

    ADS  Google Scholar 

  182. Y. Sang, H. N. Lin, and Z. Chang, Testing Einstein’s equivalence principle with short gamma-ray bursts, Mon. Not. R. Astron. Soc. 460, 2282 (2016)

    Article  ADS  Google Scholar 

  183. Z. X. Luo, B. Zhang, J. J. Wei, and X. F. Wu, Testing Einstein’s Equivalence Principle with supercluster Laniakea’s gravitational field, J. High Energy Astrophysics. 9, 35 (2016)

    Article  ADS  Google Scholar 

  184. H. Yu, S. Q. Xi, and F. Y. Wang, A new method to test the Einstein’s weak equivalence principle, Astrophys. J. 860(2), 173 (2018)

    Article  ADS  Google Scholar 

  185. S. J. Tingay and D. L. Kaplan, Limits on Einstein’s equivalence principle from the first localized fast radio burst FRB 150418, Astrophys. J. 820(2), L31 (2016)

    Article  ADS  Google Scholar 

  186. A. Nusser, On testing the equivalence principle with extragalactic bursts, Astrophys. J. 821(1), L2 (2016)

    Article  ADS  Google Scholar 

  187. D. Wang, Z. Li, and J. Zhang, Weak equivalence principle, swampland and H 0 tension with fast single radio bursts FRB 180924 and FRB 190523, Physics of the Dark Universe 29, 100571 (2020)

    Article  Google Scholar 

  188. J. J. Wei, J. S. Wang, H. Gao, and X. F. Wu, Tests of the Einstein equivalence principle using TeV blazars, Astrophys. J. 818(1), L2 (2016)

    Article  ADS  Google Scholar 

  189. Y. P. Yang and B. Zhang, Testing Einstein’s weak equivalence principle with a 0.4-nanosecond giant pulse of the Crab pulsar, Phys. Rev. D 94(10), 101501 (2016)

    Article  ADS  Google Scholar 

  190. Y. Zhang and B. Gong, Test of weak equivalence principle with the multi-band timing of the Crab pulsar, Astrophys. J. 837(2), 134 (2017)

    Article  ADS  Google Scholar 

  191. S. Desai and E. Kahya, Galactic Shapiro delay to the Crab pulsar and limit on weak equivalence principle violation, Eur. Phys. J. C 78(2), 86 (2018)

    Article  ADS  Google Scholar 

  192. C. Leung, B. Hu, S. Harris, A. Brown, J. Gallicchio, and H. Nguyen, Testing the weak equivalence principle using optical and near-infrared Crab pulses, Astrophys. J. 861(1), 66 (2018)

    Article  ADS  Google Scholar 

  193. E. O. Kahya and S. Desai, Constraints on frequency-dependent violations of Shapiro delay from GW150914, Phys. Lett. B 756, 265 (2016)

    Article  ADS  Google Scholar 

  194. S. C. Yang, W. B. Han, and G. Wang, Tests of weak equivalence principle with the gravitational wave signals in the LIGO-Virgo catalogue GWTC-1, Mon. Not. R. Astron. Soc. 499(1), L53 (2020)

    Article  ADS  Google Scholar 

  195. H. Yu and F. Y. Wang, Testing weak equivalence principle with strongly lensed cosmic transients, Eur. Phys. J. C 78(9), 692 (2018)

    Article  ADS  Google Scholar 

  196. O. Minazzoli, Strong lensing in multimessenger astronomy as a test of the equivalence principle, arXiv: 1912.06891 (2019)

  197. X. F. Wu, J. J. Wei, M. X. Lan, H. Gao, Z. G. Dai, and P. Meszaros, New test of weak equivalence principle using polarized light from astrophysical events, Phys. Rev. D 95(10), 103004 (2017)

    Article  ADS  Google Scholar 

  198. J. J. Wei and X. F. Wu, Testing the weak equivalence principle and Lorentz invariance with multiwavelength polarization observations of GRB optical afterglows, Eur. Phys. J. Plus 135(6), 527 (2020)

    Article  Google Scholar 

  199. S. X. Yi, Y. C. Zou, X. Yang, B. Liao, and S. W. Wei, Constraining the Einstein equivalence principle with multi-wavelength observations of polarized blazars, Mon. Not. R. Astron. Soc. 493(2), 1782 (2020)

    Article  ADS  Google Scholar 

  200. S. X. Yi, Y. C. Zou, J. J. Wei, and Q. Q. Zhou, Constraining Einstein’s equivalence principle with multiwavelength polarized astrophysical sources, Mon. Not. R. Astron. Soc. 498(3), 4295 (2020)

    Article  ADS  Google Scholar 

  201. H. Abdalla, R. Adam, F. Aharonian, F. Ait Benkhali, E. O. Angüner, et al, A very-high-energy component deep in the γ-ray burst afterglow, Nature 575(7783), 464 (2019)

    Article  ADS  Google Scholar 

  202. B. Zhang, Extreme emission seen from γ-ray bursts, Nature 575(7783), 448 (2019)

    Article  ADS  Google Scholar 

  203. M. L. McConnell, High energy polarimetry of prompt GRB emission, New Astron. Rev. 76, 1 (2017)

    Article  ADS  Google Scholar 

  204. S. Gao and R. M. Wald, Theorems on gravitational time delay and related issues, Class. Quantum Grav. 17(24), 4999 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  205. Y. Hoffman, D. Pomarede, R. B. Tully, and H. M. Courtois, The dipole repeller, Nat. Astron. 1, 0036 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referees for insightful comments. This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 11673068, 11725314, U1831122, and 12041306), the Youth Innovation Promotion Association (2017366), the Key Research Program of Frontier Sciences (Grant Nos. QYZDB-SSW-SYS005 and ZDBS-LY-7014), and the Strategic Priority Research Program “Multi-waveband gravitational wave universe” (Grant No. XDB23000000) of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Jie Wei or Xue-Feng Wu.

Additional information

arXiv: 2102.03724. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1049-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, JJ., Wu, XF. Testing fundamental physics with astrophysical transients. Front. Phys. 16, 44300 (2021). https://doi.org/10.1007/s11467-021-1049-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1049-x

Keywords

Navigation