Skip to main content
Log in

Subjectness of Intelligence: Quantum-Theoretic Analysis and Ethical Perspective

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

Recent developments in artificial intelligence urge clarification of its ethical and legal status. The issue revolves around the concept of subjectness, distinguishing active and responsible conduct from inert performance. We analyze this notion from a physical viewpoint, building on the quantum-theoretic refinement of the concept of uncertainty into quantum and classical types: quantum uncertainty refers to an objective freedom to construct the future, while classical uncertainty denotes subjective ignorance of present states of nature. Subjectness of intelligence is then defined by the kind of uncertainty it is capable to resolve. To analyze different aspects of intelligence, quantum-inspired definitions of decision, subjectness, originality, and meaning are introduced on this basis. These concepts are first calibrated on natural intelligence and then applied to artificial systems, classified as classical and quantum. Classical AI then appears fundamentally alien to subjectness due to its algorithmic nature, limited to the resolution of classical uncertainty. Quantum AI, in contrast, breaks this limit by hosting some degree of proto-subjectness on the level of elementary particles, involved in its operation. Fundamentally, our approach tracks alternative views on subjectness of intelligence to the interpretations of quantum randomness, identifying both as different sides of the same ethical dilemma. Quantum physics then provides fertile ground for possible solutions, aligned with Eastern and Western views on freedom and constraint, subject and context in social life. These results offer a scientific approach to the controversial challenges of socio-technological development, integrating physical and humanitarian perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. This process of creation, however, also includes a discovery aspect, allowing estimation of a source quantum state from statistics of the outcomes (Paris & Reháček, 2004).

  2. Objective and irreducible randomness, “genuine fortuitousness” in the resolution of quantum uncertainty, is considered a fundamental feature of quantum mechanics (Kofler & Zeilinger, 2010; Acín, 2013; Jaeger, 2017) as well as its foundational principle (Bohr et al., 2004). Still, it is possible to interpret quantum experiments by means of deterministic hidden variables, as in the pilot wave approach (Bohm & Hiley, 1993) (essentially fulfilling Einstein’s dream of a completely deterministic Universe, although at the price of nonlocality). In a similar spirit, quantum uncertainty can be simulated by simple mechanical machines, explicitly introducing uncontrollable hidden parameters in measurement procedures (Aerts, 1995; Aerts & Sassoli de Bianchi, 2015). The objective (ontological) instead of subjective (epistemic) nature of quantum uncertainty (Atmanspacher, 2002) asserted in Definition 2 thus holds the status of an assumption, central for the present work.

  3. This measure differs from the Shannon entropy as proposed in Georgiev (2021), which is fully defined by the probabilities of available alternatives, irrespectable of their classical or quantum origin. Shannon’s entropy therefore ascribes non-zero free will to purely classical uncertainties (3) in which no free choice is present. The present approach, in contrast, captures this difference. Being the distance of the state from the Bloch sphere diameter, coherence (6) is zero for all classical uncertainties as required by their subjective nature.

  4. This view could be uncomfortable for those who either discard the possibility of free choice at all, or monopolize it for the human species. Without these strong and unproven assumptions the paradox essentially disappears.

  5. In the question of quantum brain it is important not to generalize conclusions of “impossibility” beyond the scope of the models used in the argument. Unconditional impossibility proofs are impossible.

  6. Extrapolating the argument of Georgiev (2021) to the quantum domain (supposing that the involved chemical uncertainties are purely quantum), the creative rate of cortical synaptic activity of an average human is estimated at 96 terabytes per second.

  7. Elementary particles, however, might be not as elementary as presently believed. A realistic model of two-slit interference, for example, implies that electron must have a complex internal structure akin to that of radio, enabling interaction with its pilot wave (Bohm and Hiley, 1993, p. 37).

  8. Thus preventing a “haphazard”, the prospect of which made Schrödinger to reject quantum uncertainty as the physical basis of free will (Schrödinger, 1936; Schrödinger, 1954, p. 162–167). Natural constraints therefore do not suppress freedom of choice but really make it possible (Heisenberg, 2013).

  9. Or to their neuro-cognitive representations, constituting the conceptual context of the decision-making within individual cognition (Aerts et al., 2016)

  10. A great child of European culture, whose alignment with holistic worldviews of the East (Wendt, 2015; Kauffman, 2016; Healey, 2017; Jaeger, 2019; Zohar, 2022) just illustrates the convergence of conceptual opposites.

References

  • Acín, A. (2013). True quantum randomness. In A. Suarez & P. Adams (Eds.), Is science compatible with free will? (pp. 7–22). New York: Springer.

    Chapter  Google Scholar 

  • Aerts, D. (1995). Quantum structures: An attempt to explain the origin of their appearance in nature. International Journal of Theoretical Physics, 34(8), 1165–1186.

    Article  Google Scholar 

  • Aerts, D. (1998). The entity and modern physics: The creation-discovery view of reality. In E. Castellani (Ed.), Interpreting bodies: Classical and quantum objects in modern physics, chapter 14 (pp. 223–257). Princeton: Princeton University Press.

    Google Scholar 

  • Aerts, D., Apostel, L., De Moor, B., Hellemans, S., Maex, E., Van Belle, H., & Van der Veken, J. (1994). World views: From fragmentation to integration. Brussels: VUB Press.

    Google Scholar 

  • Aerts, D., Broekaert, J., & Gabora, L. (2000). Intrinsic contextuality as the crux of consciousness. In K. Yasue (Ed.), Fundamental approaches to consciousness. Tokyo: John Benjamins Publishing Company.

    Google Scholar 

  • Aerts, D., & Coecke, B. (1999). The creation-discovery-view: Towards a possible explanation of quantum reality. In D. Chiara (Ed.), Language, quantum, music (pp. 105–116). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Aerts, D., & Sassoli de Bianchi, M. (2015). The unreasonable success of quantum probability I: Quantum measurements as uniform fluctuations. Journal of Mathematical Psychology, 67, 51–75.

    Article  Google Scholar 

  • Aerts, D., Sassoli de Bianchi, M., & Sozzo, S. (2016). On the foundations of the brussels operational-realistic approach to cognition. Frontiers in Physics, 4(May), 1–14.

    Google Scholar 

  • Aguilar, W., SantamarÃa-Bonfil, G., Froese, T., & Gershenson, C. (2014). The past, present, and future of artificial life. Frontiers in Robotics and AI, 1(October), 1–15.

    Google Scholar 

  • Allen, C., Wallach, W., & Smit, I. (2006). Why machine ethics? IEEE Intelligent Systems, 21(4), 12–17.

    Article  Google Scholar 

  • Altman, R. (2015). Robotics: Ethics of artificial intelligence. Nature, 521(7553), 415–418.

    Article  Google Scholar 

  • Alvarez-Rodriguez, U., Sanz, M., Lamata, L., & Solano, E. (2016). Artificial life in quantum technologies. Scientific Reports, 6, 1–9.

    Article  Google Scholar 

  • Atmanspacher, H. (2002). Determinism is ontic, determinability is epistemic. Between Chance and Choice: Interdisciplinary Perspectives on Determinism, (November), pp. 49–74.

  • Augello, A., Infantino, I., Pilato, G., Rizzo, R., & Vella, F. (2015). Creativity evaluation in a cognitive architecture. Biologically Inspired Cognitive Architectures, 11, 29–37.

    Article  Google Scholar 

  • Baumeister, R. F., Bauer, I. M., & Lloyd, S. A. (2010). Choice, free will, and religion. Psychology of Religion and Spirituality, 2(2), 67–82.

    Article  Google Scholar 

  • Baumgratz, T., Cramer, M., & Plenio, M. B. (2014). Quantifying coherence. Physical Review Letters, 113(14), 1–5.

    Article  Google Scholar 

  • Bedau, M. A., McCaskill, J. S., Packard, N. H., Rasmussen, S., Adami, C., Green, D. G., Ikegami, T., Kaneko, K., & Ray, T. S. (2000). Open problems in artificial life. Artificial Life, 6(4), 363–376.

    Article  Google Scholar 

  • Beghetto, R. A. (2021). There is no creativity without uncertainty: Dubito Ergo Creo. Journal of Creativity, 31(September), 100005.

    Article  Google Scholar 

  • Besold, T. R., Zaadnoordijk, L., & Vernon, D. (2021). Feeling functional: A formal account of artificial phenomenology. Journal of Artificial Intelligence and Consciousness, 08(01), 147–160.

    Article  Google Scholar 

  • Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine learning. Nature, 549(7671), 195–202.

    Article  Google Scholar 

  • Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence, 103(1–2), 347–356.

    Article  Google Scholar 

  • Bohm, D. (1990). A new theory of the relationship of mind and matter. Philosophical Psychology, 3(2–3), 271–286.

    Article  Google Scholar 

  • Bohm, D., & Hiley, B. J. (1993). The undivided universe: An ontological interpretation of quantum theory.

  • Bohr, A., Mottelson, B. R., & Ulfbeck, O. (2004). The principle underlying quantum mechanics. Foundations of Physics, 34(3), 405–417.

    Article  Google Scholar 

  • Bradley, R. (2000). Agency and the theory of quantum vacuum interaction. World Futures: J. New Paradigm Res., 55(3), 227–275.

    Article  Google Scholar 

  • Briegel, H. J. (2012). On creative machines and the physical origins of freedom. Sci. Rep., 2, 522.

    Article  Google Scholar 

  • Brillouin, L. (1960). Science and information theory. Dover Publications, 2 edition.

  • Brown, J. E. (2020). Team builds the first living robots.

  • Bryson, J. J. (2018). Patiency is not a virtue: The design of intelligent systems and systems of ethics. Ethics and Information Technology, 20(1), 15–26.

    Article  Google Scholar 

  • Burdon, P. D. (2020). Obligations in the anthropocene. Law and Critique, 31(3), 309–328.

    Article  Google Scholar 

  • Busemeyer, J. R., & Bruza, P. D. (2012). Quantum models of cognition and decision. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Cervantes, J. A., López, S., Rodríguez, L. F., Cervantes, S., Cervantes, F., & Ramos, F. (2020). Artificial moral agents: A survey of the current status. Science and Engineering Ethics, 26(2), 501–532.

    Article  Google Scholar 

  • Chakrabarti, A. (2016). Free will and freedom in Indian philosophies. In The Routledge companion to free will2, chapter 35, pp. 385. Routledge.

  • Chen, S. (2021). Chinese scientists develop AI ‘prosecutor’ that can press its own charges.

  • Conway, J. H., & Kochen, S. (2006). The free will theorem. Foundations of Physics, 36, 1441–1473.

    Article  Google Scholar 

  • Conway, J. H. & Kochen, S. (2011). The strong free will theorem. In Halvorson, H., editor, Deep beauty, vol. 56, chapter 12, pp. 443–454. Cambridge University Press, Cambridge.

  • Cullinan, C. (2003). Wild law: A manifesto for earth justice. Siber Ink.

  • Cuthbertson, A. (2017). Tokyo: Artificial intelligence ’Boy’ Shibuya Mirai becomes World’s first AI bot to be granted residency.

  • Davies, P. C. (2004). Does quantum mechanics play a non-trivial role in life? BioSystems, 78(1–3), 69–79.

    Article  Google Scholar 

  • Davies, P. C. W., & Brown, J. R. (Eds.). (1986). The ghost in the atom. A discussion of the mysteries of quantum physics. Cambridge University Press.

  • Deely, J. (2009). Purely objective reality. Semiotics, Communication and Cognition: Mouton de Gruyter, Berlin, New York.

  • Deng, L. Y., & Bowman, D. (2017). Developments in pseudo-random number generators. Wiley Interdisciplinary Reviews: Computational Statistics, 9(5).

  • Dennett, D. C. (1978). Why you can’t make a computer that feels pain. Synthese, 38(3), 415–456.

    Article  Google Scholar 

  • Dennett, D. C. (1984). I Could not have Done Otherwise — So What? The Journal of Philosophy, 81(10), 553–565.

  • Dennett, D. C. (2019). What can we do (pp. 41–53). Possible minds: Twenty-five ways of looking at AI.

  • Detrain, C., & Deneubourg, J. L. (2006). Self-organized structures in a superorganism: do ants “behave’’ like molecules? Physics of Life Reviews, 3(3), 162–187.

    Article  Google Scholar 

  • Doctor, T. et al. (2022). Biology, Buddhism, and AI: Care as the Driver of Intelligence. Entropy, 24(5).

  • Di Paolo, E. A. (2005). Autopoiesis, adaptivity, teleology, agency. Phenomenology and the Cognitive Sciences, 4(4), 429–452.

    Article  Google Scholar 

  • Dunjko, V., & Briegel, H. J. (2018). Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Reports on Progress in Physics, 81(7), 074001.

    Article  Google Scholar 

  • European Commission (2021). Proposal for a Regulation of the European Parliament and of the Council: Laying down harmonised rules on artificial intelligence (artificial intelligence act) and amending certain union legislative acts.

  • Feynman, R. P., Leyton, R. B., & Sands, M. (1964). Feynman lectures in physics vol. III.

  • Fuchs, C. A. (2017). Notwithstanding Bohr, the reasons for QBism. Mind and Matter, 15(2), 245–300.

    Google Scholar 

  • Gabora, L. (2005). Creative thought as a non-Darwinian evolutionary process. Journal of Creative Behavior, 39(4), 262–283.

    Article  Google Scholar 

  • Gazzaniga, M. S. (2011). Who’s in charge? Harper Collins: Free will and the science of the brain.

  • Gellers, J. C. (2020). Rights for robots. London: Routledge.

    Book  Google Scholar 

  • Georgiev, D. D. (2021). Quantum propensities in the brain cortex and free will. BioSystems, 208, 104474.

    Article  Google Scholar 

  • Gerlach, W., & Stern, O. (1922). Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Zeitschrift für Physik, 9(1), 349–352.

    Article  Google Scholar 

  • Gobet, F., & Sala, G. (2019). How artificial intelligence can help us understand human creativity. Frontiers in Psychology, 10(JUN):1–6.

  • Guilford, J. P. (1959). Three faces of intellect. American Psychologist, 14(8), 469–479.

    Article  Google Scholar 

  • Haggard, P. (2017). Sense of agency in the human brain. Nature Reviews Neuroscience, 18(4), 196–207.

    Article  Google Scholar 

  • Hameroff, S., & Penrose, R. (2014). Consciousness in the universe: a review of the ‘Orch OR’ theory. Physics of Life Reviews, 11(1), 39–78.

    Article  Google Scholar 

  • Hameroff, S. R. (1994). Quantum coherence in microtubles: A neural basis for Wmwgrant consciousness? Journal of Consciousness Studies, 1(1), 91–118 (two pages).

  • Harari, Y. N. (2017). Homo Deus. Harper Collins: A brief history of tomorrow.

  • Harris, S. (2012). Free will. Free Press.

  • Healey, R. (2017). The quantum revolution in philosophy. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Heisenberg, M. (2013). The origin of freedom in animal behaviour. In A. Suarez & P. Adams (Eds.), Is science compatible with free will?, chapter 7 (pp. 95–103). New York: Springer.

    Chapter  Google Scholar 

  • Heisenberg, W. (1958). Physics und philosophy. The revolution in modern science. Penguin Books.

  • Herrero-Collantes, M., & Garcia-Escartin, J. C. (2017). Quantum random number generators. Reviews of Modern Physics, 89(1), 1–48.

    Article  Google Scholar 

  • Hodgson, D. (2012). Quantum physics, consciousness, and free will. In Kane, R., editor, The Oxford handbook of free will: Second edition. Oxford University Press.

  • Huesken, S. (2014). Artificial life and ethics. NanoEthics, 8(1), 111–116.

    Article  Google Scholar 

  • Ihalainen, J. (2018). Computer creativity: Artificial intelligence and copyright. Journal of Intellectual Property Law & Practice, 0(0), 1–5.

  • Jaeger, G. (2007). Quantum information: An overview. Springer.

  • Jaeger, G. (2017). Quantum potentiality revisited. Philosophical Transactions of the Royal Society A, 375(2106), 20160390.

    Article  Google Scholar 

  • Jaeger, L. (2019). The second quantum revolution: From entanglement to quantum computing and other super-technologies. Springer.

  • James, F. (1990). A review of pseudorandom number generators. Computer Physics Communications, 60(3), 329–344.

    Article  Google Scholar 

  • Jedlicka, P. (2017). Revisiting the quantum brain hypothesis: Toward quantum (neuro)biology? Frontiers in Molecular Neuroscience, 10(November), 1–8.

    Google Scholar 

  • Kauffman, S. A. (2016). Humanity in a creative universe. Oxford: Oxford University Press.

    Google Scholar 

  • Kauffman, S. A., & Gare, A. (2015). Beyond descartes and Newton: Recovering life and humanity. Progress in Biophysics and Molecular Biology, 119(3), 219–244.

    Article  Google Scholar 

  • Khan, I. (2016). Free will: A road less travelled in quantum information.

  • Khrennikov, A. (2015). Quantum-like modeling of cognition. Frontiers in Physics, 3(77), 77.

    Google Scholar 

  • Khrennikov, A. Y. (2023). Open quantum systems in biology. Cognitive and social sciences. Springer, Cham.

  • Kiškis, M. (2023). Legal framework for the coexistence of humans and conscious AI Frontiers in Artificial Intelligence, 6.

  • Kofler, J., & Zeilinger, A. (2010). Quantum information and randomness. European Review, 18(4), 469–480.

    Article  Google Scholar 

  • Kolmogorov, A. N. (1956). Foundations of the theory of probability. New York: Chelsea Publishing Company.

    Google Scholar 

  • Lamża, Ł. (2021). Superorganisms of the Protist Kingdom: A new level of biological organization. Foundations of Science, 26(2), 281–300.

    Article  Google Scholar 

  • Landauer, R. (1987). Computation: A fundamental physical view. Physica Scripta, 35(1), 88–95.

    Article  Google Scholar 

  • Libet, B. (1985). Unconscious cerebral initiative and the role of conscious will in voluntary action. Behavioral and Brain Sciences, 8(4), 529–539.

    Article  Google Scholar 

  • Libet, B. (1999). Do we have free will? Journal of Consciousness Studies, 6(8–9), 47–57.

    Google Scholar 

  • MacIntyre, J., Medsker, L., & Moriarty, R. (2021). At the tipping point. AI and Ethics, 1, 1–3.

    Article  Google Scholar 

  • Maclure, J. (2020). The new AI spring: A deflationary view. AI and Society, 35(3), 747–750.

    Article  Google Scholar 

  • Marchal, K., & Wenzel, C. H. (2016). Chinese perspectives on free will. In K. Timpe, M. Griffith, & N. Levy (Eds.), The Routledge companion to free will, chapter 34 (pp. 374–388). London: Routledge.

    Google Scholar 

  • Marko, K. (2019). Robot rights: A legal necessity or ethical absurdity? Diginomica.

  • Matsuno, K. (2020). Making the onset of semiosis comprehensible with use of quantum physics. Biosemiotics, 13(2), 271–283.

    Article  Google Scholar 

  • McDonough, R. (1994). Machine predictability versus human creativity. In T. Dartnall (Ed.), Artificial intelligence and creativity: An interdisciplinary approach (pp. 117–135). Berlin: Springer.

    Chapter  Google Scholar 

  • McNally, P., & Inayatullah, S. (1988). The rights of robots. Futures, 20(2), 119–136.

    Article  Google Scholar 

  • Melnikova, E. N. & Surov, I. A. (2023). Legal status of artificial intelligence from quantum-theoretic perspective. Brics Law Journal, 10(4), 5–34.

  • Merali, Z. (2013). Are humans the only free agents in the universe? In A. Suarez & P. Adams (Eds.), Is science compatible with free will? (pp. 81–94). New York: Springer.

    Chapter  Google Scholar 

  • Mikalef, P., Conboy, K., Lundström, J. E., & Popovič, A. (2022). Thinking responsibly about responsible AI and ‘the dark side’ of AI. European Journal of Information Systems.

  • Morf, M. E. (2018). Agency, chance, and the scientific status of psychology. Integrative Psychological and Behavioral Science, 52(4), 491–507.

    Article  Google Scholar 

  • Morley, J., Floridi, L., Kinsey, L., & Elhalal, A. (2020). From what to how: An initial review of publicly available ai ethics tools, methods and research to translate principles into practices. Science and Engineering Ethics, 26(4), 2141–2168.

    Article  Google Scholar 

  • Neisser, U., Boodoo, G., Bouchard, T. J., Boykin, A. W., Brody, N., Ceci, S. J., Halpern, D. F., Loehlin, J. C., Perloff, R., Sternberg, R. J., & Urbina, S. (1996). Intelligence: Knowns and unknowns. American Psychologist, 51(2), 77–101.

    Article  Google Scholar 

  • Nisbett, R. E., Peng, K., Choi, I., & Norenzayan, A. (2001). Culture and systems of thought: Holistic versus analytic cognition. Psychological Review, 108(2), 291–310.

    Article  Google Scholar 

  • O’Connor, T. & Franklin, C. (2018). Free Will. In Zalta, E. N., editor, The Stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University, spring 2 edition.

  • Overbye, D. (2007). Free will: Now you have it. The New York Times: Now You Don’t.

  • Papadopoulou, A. (2021). Creativity in crisis: Are the creations of artificial intelligence worth protecting? Journal of Intellectual Property, Information Technology and E-Commerce Law, 12, 408.

  • Paris, M. G. A., & Reháček, J. (Eds.). (2004). Quantum state estimation Lecture Notes in Physics (Vol. 649). Berlin, Heidelberg: Springer.

  • Peil, K. T. (2014). Emotion: The self-regulatory Sense. Global Advances in Health and Medicine, 3(2), 80–108.

    Article  Google Scholar 

  • Peres, A. (1978). Unperformed experiments have no results. American Journal of Physics, 46(7), 745–747.

    Article  Google Scholar 

  • Peres, A. (1986). Existence of “free will’’ as a problem of physics. Foundations of Physics, 16(6), 573–584.

    Article  Google Scholar 

  • Persaud, P., Varde, A. S., & Wang, W. (2021). Can robots get some human rights? A cross-disciplinary discussion. Journal of Robotics.

  • Pothos, E. M., & Busemeyer, J. R. (2022). Quantum cognition. Annual Review of Psychology, 73(1), 749–778.

    Article  Google Scholar 

  • Prodhan, J. (2016). Europe’s robots to become ‘electronic persons’ under draft plan. Reuters.

  • Proudfoot, D. (2011). Anthropomorphism and AI: Turings much misunderstood imitation game. Artificial Intelligence, 175(5–6), 950–957.

    Article  Google Scholar 

  • Quastler, H. (1964). The emergence of biological organization. New Haven: Yale University Press.

    Google Scholar 

  • Roli, A., Jaeger, J., & Kauffman, S. A. (2022). How organisms come to know the World: Fundamental limits on artificial general intelligence. Frontiers in Ecology and Evolution, 9.

  • Salles, A., Evers, K., & Farisco, M. (2020). Anthropomorphism in AI. AJOB Neuroscience, 11(2), 88–95.

    Article  Google Scholar 

  • Salvatore, S., & De Luca Picione, R. (2023). The analysis of meaning. In S. Salvatore, A. G. Veltri, & T. Mannarini (Eds.), Methods and instruments in the study of meaning-making, chapter 1 (pp. 3–28). Cham: Springer.

    Chapter  Google Scholar 

  • Schrödinger, E. (1936). Indeterminism and Free Will. Nature, 138(3479), 13–14.

  • Schrödinger, E. (1954). Nature and the greeks. Science and Humanism: Cambridge University Press.

  • Sergeev, S. (2019). On the problem of creating robotic systems with artificial consciousness and acting personality (in Russian). Robotics and Technical Cybernetics, 7(4), 245–257.

    Article  Google Scholar 

  • Shafer-Landau, R., editor (2013). Ethical theory. Wiley-Blackwell, 2 edition.

  • Sharov, A., & Tønnessen, M. (2021). Semiotic agency, volume 25 of Biosemiotics. Springer, Cham.

  • Shiller, A. V. (2020). The place of the ethical system in the architecture of artificial intelligence. Vestnik Tomskogo gosudarstvennogo universiteta, 456, 99–103.

    Article  Google Scholar 

  • Sini, R. (2017). Does Saudi robot citizen have more rights than women?

  • Solum, L. B. (1992). Legal personhood for artificial intelligences. North Carolina Law Review, 70(4), 1231–1287.

    Google Scholar 

  • Stapp, H. P. (2017). Quantum theory and free will. Berlin: Springer.

    Book  Google Scholar 

  • Stenseke, J. (2022). Interdisciplinary confusion and resolution in the context of moral machines. Science and Engineering Ethics.

  • Sternberg, R. J. (1984). Toward a triarchic theory of human intelligence. Behavioral and Brain Sciences, 7(2), 269–287.

    Article  Google Scholar 

  • Stewart, P. (2022). Why science does not get you. The nonergodic social world and the limit to measurement. World Futures, 0(0):1–19.

  • Suppes, P. (1993). The transcendental character of determinism. Midwest Studies In Philosophy, 18(1), 242–257.

    Article  Google Scholar 

  • Surov, I. A. (2021). Quantum cognitive triad: Semantic geometry of context representation. Foundations of Science, 26(4), 947–975.

    Article  Google Scholar 

  • Surov, I. A. (2022). Natural code of subjective experience. Biosemiotics, 15(1), 109–139.

    Article  Google Scholar 

  • Surov, I. A. (2022b). Quantum core affect. Color-emotion structure of semantic atom. Frontiers in Psychology, 13.

  • Surov, I. A. (2023). Quantum concept of free choice. Proceedings of the Institute of Psychology of the Russian Academy of Sciences. 3(4), 68–82 (in Russian).

  • Surov, I. A., Ignateva, V. V., & Bazhenov, A. Y. (2021). Regimes of collective logic. Kybernetes, 50(8), 2428–2452.

    Article  Google Scholar 

  • Tegmark, M. (2000). Importance of quantum decoherence in brain processes. Physical Review E, 61(4), 4194–4206.

    Article  Google Scholar 

  • Thompson, E., & Stapleton, M. (2009). Making sense of sense-making: Reflections on enactive and extended mind theories. Topoi, 28(1), 23–30.

    Article  Google Scholar 

  • Timpe, K., Griffith, M., and Levy, N., editors (2017). The Routledge companion to free will. Routledge.

  • UNESCO (2022). The ethics of artificial intelligence. https://unesdoc.unesco.org/ark:/48223/pf0000381137.

  • Veale, T., & Cardoso, A. (Eds.). (2018). Computational creativity. The Philosophy and Engineering of Autonomously Creative Systems: Springer.

  • Vervoort, L., & Blusiewicz, T. (2020). Free will and (in)determinism in the brain: a case for naturalized philosophy. THEORIA. An International Journal for Theory, History and Foundations of Science, 35(3), 345–364.

  • von Uexküll, J. (1992). A stroll through the worlds of animals and men: A picture book of invisible worlds. Semiotica, 89(4), 319–391.

    Google Scholar 

  • Wachowicz, M., & Goncalves, L. R. (2019). Artificial intelligence and creativity. Gedai: New Concepts in Intellectual Property.

  • Watson, G. (1987). Free action and free will. Mind, 96(382), 145–172.

    Article  Google Scholar 

  • Weingarten, C. P., Doraiswamy, P. M., & Fisher, M. P. A. (2016). A new spin on neural processing: Quantum cognition. Frontiers in Human Neuroscience, 10(October), 1–5.

    Google Scholar 

  • Weizsäcker, E. U., & Wijkman, A. (2018). Come On! capitalism, short-termism. Springer, New York, New York: Population and the Destruction of the Planet.

  • Wendt, A. (2015). Quantum mind and social science. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Wiggins, G. A. (2006). Searching for computational creativity. New Generation Computing, 24(3), 209–222.

    Article  Google Scholar 

  • Wojtczak, S. (2020). 2021. Endowing artificial intelligence with legal subjectivity: AI and society.

  • Yangfei, Z. (2020). Court rules AI-written article has copyright. China Daily. https://www.chinadaily.com.cn/a/202001/09/WS5e16621fa310cf3e3558351f.html.

  • Yudkowsky, E. (2008). Artificial intelligence as a positive and negative factor in global risk. In N. Bostrom & M. Cirkovic (Eds.), Global catastrophic risks (pp. 308–345). Oxford: Oxford University Press.

    Google Scholar 

  • Zohar, D. (1995). A quantum mechanical model of consciousness and the emergence of ‘I’. Minds and Machines, 5(4), 597–607.

    Article  Google Scholar 

  • Zohar, D. (2022). Zero distance. Singapore: Springer.

    Book  Google Scholar 

  • Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715–775.

    Article  Google Scholar 

Download references

Funding

No funding was received for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya A. Surov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surov, I.A., Melnikova, E.N. Subjectness of Intelligence: Quantum-Theoretic Analysis and Ethical Perspective. Found Sci (2024). https://doi.org/10.1007/s10699-024-09947-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10699-024-09947-y

Keywords

Navigation