Skip to main content

Quantum-Like Cognition and Rationality: Biological and Artificial Intelligence Systems

  • Chapter
  • First Online:
Quantum Computing in the Arts and Humanities
  • 832 Accesses

Abstract

This is a short introductory review on quantum-like modeling of cognition with applications to decision-making and rationality. The aim of the review is twofold: (a) to present briefly the apparatus of quantum information and probability theory useful for such modeling; (b) to motivate applications of this apparatus in cognitive studies and artificial intelligence, psychology, decision-making, social and political sciences. We define quantum rationality as decision-making that is based on quantum information processing. Quantumly and classically rational agents behaves differently. A quantum-like agent can violate the Savage Sure Thing Principle, the Aumann theorem on impossibility of agreeing to disagree. Such an agent violates the basic laws of classical probability, e.g., the law of total probability and the Bayesian probability inference. In some contexts, “irrational behavior” (from the viewpoint of classical theory of rationality) can be profitable, especially for agents who are overloaded by a variety of information flows. Quantumly rational agents can save a lot of information processing resources. At the same time, this sort of rationality is the basis for quantum-like socio-political engineering, e.g., social laser. This rationality plays the important role in the process of decision-making not only by biosystems, but even by AI-systems. The latter equipped with quantum(-like) information processors would behave irrationally, from the classical viewpoint. As for biosystems, quantum rational behavior of AI-systems has its advantages and disadvantages. Finally, we point out that quantum-like information processing in AI-systems can be based on classical physical devices, e.g., classical digital or analog computers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Of course, non-Bayesian probability updates are not reduced to quantum, given by state transformations in the complex Hilbert space. One may expect that human decision-making violates not only classical, but even quantum rationality.

  2. 2.

    Comment: earthquakes nearby Tokyo happen often; in some periods things in room shake practically everyday. Amplitudes vary day to day; of course each time I estimated their strength. But this is difficult to do subjectively....

  3. 3.

    Although in quantum physics the magnitudes of these numbers play an important role, in quantum information theory the eigenvalues are merely formal labels encoding information which can be extracted from a state with the aid of an observable. In the case of dichotomous answers, we can simply use zero to encode “no” and one to encode “yes”.

  4. 4.

    We state again that in the classical probability model the states of the world are encoded by points of \(\Omega .\) Take one fixed state \(\omega .\) Since information representation of each agent is a partition of \(\Omega ,\) for each i there exists an element of partition, say \(P_j^{(i)},\) containing this \(\omega .\) For this state of the world, the ith agent should definitely get the answer \(a_j^{(i)}\) corresponding the element \(P_j^{(i)}\). Thus any agent is able to resolve uncertainty at least for her/his information representation (although she/he is not able to completely resolve uncertainty about the state of the world). In the quantum case, an agent is not able to resolve uncertainty even at the level of her/his information representation. And the prior probability is updated in this uncertainty context.

  5. 5.

    For example, the state space H is four dimensional with the orthonormal basis \((e_1,e_2, e_3, e_4),\) the projectors \(P_1\) and \(P_2\) project H onto the subspaces with the bases \((e_1,e_2)\) and \((e_3, e_4),\) respectively. Here \((P_1, P_2)\) is information representation of an agent. Let E be the projector onto the subspace with the basis \((e_1, e_4)\) and let \(\Psi =(e_1+e_4)/\sqrt{2}.\) Then \(Q_\Psi = I,\) the unit operator. Hence, E is not known for this agent, although it belongs to \(H_E.\)

References

  • Aerts, D., Khrennikov, A., Melucci, M., & Toni, B. (Eds.). (2019). Quantum-like models for information retrieval and decision-making. STEAM-H: Science, technology, engineering, agriculture, mathematics & health. Springer.

    Google Scholar 

  • Arndt, M., Juffmann, T., & Vedral, V. (2009). Quantum physics meets biology. HFSP Journal,3(6), 386–400. https://doi.org/10.2976/1.3244985

  • Asano, M., Basieva, I., Khrennikov, A., & Yamato, I. (2017a). A model of differentiation in quantum bioinformatics. Progress in Biophysics and Molecular Biology,130, Part A, 88–98.

    Google Scholar 

  • Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y., & Yamato, I. (2012). Quantum-like model for the adaptive dynamics of the genetic regulation of E. coli’s metabolism of glucose/lactose. Systems and Synthetic Biology, 6, 1–7.

    Google Scholar 

  • Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y., & Yamato, I. (2015b). Quantum information biology: From information interpretation of quantum mechanics to applications in molecular biology and cognitive psychology. Foundations of Physics, 45(10), 1362–1378.

    Google Scholar 

  • Asano, M., Khrennikov, A., Ohya, M., Tanaka, Y., & Yamato, I. (2014). Violation of contextual generalization of the Leggett-Garg inequality for recognition of ambiguous figures. Physica Scripta,T163, 014006.

    Google Scholar 

  • Asano, M., Khrennikov, A., Ohya, M., Tanaka, Y., & Yamato, I. (2015a). Quantum adaptivity in biology: From genetics to cognition. Springer.

    Google Scholar 

  • Asano, M., Basieva, I., Khrennikov, A., Ohya, M., & Tanaka, Y. (2017b). A quantum-like model of selection behavior. Journal of Mathematical Psychology, 78, 2–12.

    Article  MathSciNet  MATH  Google Scholar 

  • Asano, M., Ohya, M., Tanaka, Y., Basieva, I., & Khrennikov, A. (2011). Quantum-like model of brain’s functioning: Decision making from decoherence. Journal of Theoretical Biology, 281(1), 56–64.

    Article  MathSciNet  MATH  Google Scholar 

  • Aumann, R. J. (1976). Agreeing on disagree. The Annals of Statistics,4, 1236–1239.

    Google Scholar 

  • Bagarello, F. (2019). Quantum concepts in the social, ecological and biological sciences. Cambridge University Press.

    Google Scholar 

  • Bagarello, F., Basieva, I., Pothos, E. M., & Khrennikov, A. (2018). Quantum like modeling of decision making: Quantifying uncertainty with the aid of Heisenberg-Robertson inequality. Journal of Mathematical Psychology, 84, 49–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Bagarello, F., & Oliveri, F. (2013). A phenomenological operator description of interactions between populations with applications to migration. Mathematical Models and Methods in Applied Sciences, 23(03), 471–492.

    Article  MathSciNet  MATH  Google Scholar 

  • Basieva, I., & Khrennikov, A. (2015). On the possibility to combine the order effect with sequential reproducibility for quantum measurements. Foundations of Physics, 45(10), 1379–1393.

    Article  MathSciNet  MATH  Google Scholar 

  • Basieva, I., Pothos, E., Trueblood, J., Khrennikov, A., & Busemeyer, J. (2017). Quantum probability updating from zero prior (by-passing Cromwell’s rule). Journal of Mathematical Psychology, 77, 58–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Bernroider, G. (2017). Neuroecology: Modeling neural systems and environments, from the quantum to the classical level and the question of consciousness. Journal of Advanced Neuroscience Research, 4, 1–9.

    Article  Google Scholar 

  • Bernroider, G., & Summhammer, J. (2012). Can quantum entanglement between ion transition states effect action potential initiation? Cognitive Computation, 4, 29–37.

    Article  Google Scholar 

  • Birkhoff, J., & von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 37(4), 823–843.

    Article  MathSciNet  MATH  Google Scholar 

  • Boyer-Kassem, T., Duchene, S., & Guerci, E. (2015). Quantum-like models cannot account for the conjunction fallacy. Theory and Decision, 10, 1–32.

    MATH  Google Scholar 

  • Busemeyer, J., & Bruza, P. (2012). Quantum models of cognition and decision. Cambridge University Press.

    Google Scholar 

  • Busemeyer, J. R., Wang, Z., Khrennikov, A., & Basieva, I. (2014). Applying quantum principles to psychology. Physica Scripta,T163, 014007.

    Google Scholar 

  • Busemeyer, J. R., Wang, Z., & Townsend, J. T. (2006). Quantum dynamics of human decision making. Journal of Mathematical Psychology, 50, 220–241.

    Article  MathSciNet  MATH  Google Scholar 

  • Davies, E. B. (1976). Quantum theory of open systems. Academic Press.

    Google Scholar 

  • Davies, E. B., & Lewis, J. T. (1970). An operational approach to quantum probability. Communications in Mathematical Physics, 17, 239–260.

    Article  MathSciNet  MATH  Google Scholar 

  • Dzhafarov, E. N., & Kujala, J. V. (2012). Selectivity in probabilistic causality: Where psychology runs into quantum physics. Journal of Mathematical Psychology, 56, 54–63.

    Article  MathSciNet  MATH  Google Scholar 

  • Dzhafarov, E. N., Zhang, R., & Kujala, J. V. (2015). Is there contextuality in behavioral and social systems? Philosophical Transactions of the Royal Society A, 374, 20150099.

    Article  MATH  Google Scholar 

  • Friedell, M. (1969). On the structure of shared awareness. Behavioral Science, 14, 28–39.

    Article  Google Scholar 

  • Hameroff, S. (1994). Quantum coherence in microtubules. A neural basis for emergent consciousness? Journal of Consciousness Studies, 1, 91–118.

    Google Scholar 

  • Haven, E., & Khrennikov, A. (2013). Quantum social science. Cambridge University Press.

    Google Scholar 

  • Haven, E., Khrennikov, A., & Robinson, T. R. (2017). Quantum Methods in Social Science: A First Course. WSP.

    Google Scholar 

  • Haven, E. (2005). Pilot-wave theory and financial option pricing. International Journal of Theoretical Physics, 44(11), 1957–1962.

    Article  MathSciNet  MATH  Google Scholar 

  • Kahneman, D., & Thaler., R. (2006). Utility maximization and experienced utility. Journal of Economic Perspectives,20, 221–232.

    Google Scholar 

  • Kahneman, D. (2003). Maps of bounded rationality: Psychology for behavioral economics. American Economic Review, 93(5), 1449–1475.

    Article  Google Scholar 

  • Kahneman, D., & Tversky, A. (1972). Subjective probability: A judgment of representativeness. Cognitive Psychology, 3(3), 430–454.

    Article  Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–291.

    Article  MathSciNet  MATH  Google Scholar 

  • Kahneman, D., & Tversky, A. (1984). Choices, values and frames. American Psychologist, 39(4), 341–350.

    Article  Google Scholar 

  • Khrennikov, A. (2004b). Information dynamics in cognitive, psychological, social, and anomalous phenomena. Ser.: Fundamental Theories of Physics.

    Google Scholar 

  • Khrennikov, A. (2010). Ubiquitous quantum structure: From psychology to finances. Springer.

    Google Scholar 

  • Khrennikov, A. (2015a). Quantum-like model of unconscious-conscious dynamics. Frontiers in Psychology,6, Art. N 997.

    Google Scholar 

  • Khrennikov, A. (2016). Probability and randomness: Quantum versus classical. Imperial College Press.

    Google Scholar 

  • Khrennikov, A. (2020). Social laser. Jenny Stanford Publ.

    Google Scholar 

  • Khrennikov, A., & Basieva, I. (2014a). Quantum model for psychological measurements: From the projection postulate to interference of mental observables represented as positive operator valued measures. NeuroQuantology,12, 324–336.

    Google Scholar 

  • Khrennikov, A., Alodjants, A. Trofimova., A., & Tsarev, D. (2018). On interpretational questions for quantum-like modeling of social lasing. Entropy,20(12), 921.

    Google Scholar 

  • Khrennikov, A., Basieva, I., Dzhafarov, E.N., Busemeyer, J. R. (2014). Quantum models for psychological measurements: An unsolved problem. PLOS ONE, 9, Art. e110909.

    Google Scholar 

  • Khrennikov, A., Basieva, I., Pothos, E. M., & Yamato, I. (2018). Quantum probability in decision making from quantum information representation of neuronal states. Scientific Reports, 8. Article number: 16225.

    Google Scholar 

  • Khrennikov, A. (1999). Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social and anomalous phenomena. Foundations of Physics, 29, 1065–1098.

    Article  MathSciNet  Google Scholar 

  • Khrennikov, A. (2003). Quantum-like formalism for cognitive measurements. Biosystems, 70, 211–233.

    Article  Google Scholar 

  • Khrennikov, A. (2004a). On quantum-like probabilistic structure of mental information. Open Systems and Information Dynamics, 11(3), 267–275.

    Article  MathSciNet  MATH  Google Scholar 

  • Khrennikov, A. (2006). Quantum-like brain: Interference of minds. BioSystems, 84, 225–241.

    Article  Google Scholar 

  • Khrennikov, A. (2015a). Towards information lasers. Entropy, 17(10), 6969–6994.

    Article  MathSciNet  Google Scholar 

  • Khrennikov, A. (2015b). Quantum version of Aumann’s approach to common knowledge: Sufficient conditions of impossibility to agree on disagree. Journal of Mathematical Economics, 60, 89–104.

    Article  MathSciNet  MATH  Google Scholar 

  • Khrennikov, A. (2016). Quantum Bayesianism as the basis of general theory of decision-making. Philosophical Transactions of the Royal Society A, 374, 20150245.

    Article  MathSciNet  MATH  Google Scholar 

  • Khrennikov, A. (2016). Social laser: Action amplification by stimulated emission of social energy. Philosophical Transactions of the Royal Society, 374(2054), 20150094.

    Google Scholar 

  • Khrennikov, A. (2018). Social laser model: From color revolutions to Brexit and election of Donald Trump. Kybernetes, 47(2), 273–278.

    Article  Google Scholar 

  • Khrennikova, P. (2014). A quantum framework for ‘Sour Grapes’ in cognitive dissonance. In H. Atmanspacher, E. Haven, K. Kitto, & D. Raine (Eds.), Quantum interaction. QI 2013. Lecture Notes in Computer Science (Vol. 8369). Springer.

    Google Scholar 

  • Khrennikova, P. (2016). Quantum dynamical modeling of competition and cooperation between political parties: The coalition and non-coalition equilibrium model. Journal of Mathematical Psychology, to be published.

    Google Scholar 

  • Khrennikova, P. (2017). Modeling behavior of decision makers with the aid of algebra of qubit creation-annihilation operators. Journal of Mathematical Psychology, 78, 76–85.

    Article  MathSciNet  MATH  Google Scholar 

  • Khrennikov, A., & Basieva, I. (2014b). Possibility to agree on disagree from quantum information and decision making. Journal of Mathematical Psychology, 62(3), 1–5.

    Article  MathSciNet  MATH  Google Scholar 

  • Khrennikov, A., Toffano, Z., & Dubois, F. (2019). Concept of information laser: From quantum theory to behavioural dynamics. The European Physical Journal Special Topics, 227(15–16), 2133–2153.

    Article  Google Scholar 

  • Kolmogorov, A. N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer.

    Google Scholar 

  • Melucci, M. (2015). Introduction to information retrieval and quantum mechanics. Springer.

    Google Scholar 

  • Okamura, K., & Ozawa, M. (2016). Measurement theory in local quantum physics. Journal of Mathematical Physics,57, 015209.

    Google Scholar 

  • Ozawa, M. & Khrennikov, A. (2020a). Application of theory of quantum instruments to psychology: Combination of question order effect with response replicability effect. Entropy,22(1), 37. 1-9436.

    Google Scholar 

  • Ozawa, M. & Khrennikov, A. (2020b). Modeling combination of question order effect, response replicability effect, and QQ-equality with quantum instruments. arXiv:2010.10444

  • Ozawa, M. (1984). Quantum measuring processes for continuous observables. Journal of Mathematical Physics, 25, 79–87.

    Article  MathSciNet  Google Scholar 

  • Ozawa, M. (1997). An operational approach to quantum state reduction. Annals of Physics (N.Y.), 259, 121–137.

    Article  MathSciNet  MATH  Google Scholar 

  • Ozawa, M. (2004). Uncertainty relations for noise and disturbance in generalized quantum measurements. Annals of Physics (N.Y.), 311, 350–416.

    Article  MathSciNet  MATH  Google Scholar 

  • Penrose, R. (1989). The Emperor’s new mind. Oxford University Press.

    Google Scholar 

  • Pothos, E., & Busemeyer, J. R. (2009). A quantum probability explanation for violations of ‘rational’ decision theory. Proceedings of Royal Society B, 276, 2171–2178.

    Article  Google Scholar 

  • Savage, L. J. (1954). The foundations of statistics. Wiley.

    Google Scholar 

  • Surov, I. A., Pilkevich, S. V., Alodjants, A. P., & Khmelevsky, S. V. (2019). Quantum phase stability in human cognition. Frontiers in Psychology, 10, 929.

    Article  Google Scholar 

  • Tsarev, D., Trofimova, A., Alodjants, A., et al. (2019). Phase transitions, collective emotions and decision-making problem in heterogeneous social systems. Scientific Reports, 9, 18039.

    Article  Google Scholar 

  • Umezawa, H. (1993). Advanced field theory: Micro, macro and thermal concepts. AIP.

    Google Scholar 

  • van Rijsbergen, C. J. (2004). The geometry of information retrieval. Cambridge University Press.

    Google Scholar 

  • Vitiello, G. (2001). My double unveiled: The dissipative quantum model of brain. Advances in Consciousness Research, John Benjamins Publishing Company.

    Google Scholar 

  • Vitiello, G. (1995). Dissipation and memory capacity in the quantum brain model. International Journal of Modern Physics B, 9, 973.

    Article  Google Scholar 

  • Von Neumann, J. (1955). Mathematical foundations of quantum mechanics. Princeton University Press.

    Google Scholar 

  • Wang, Z., & Busemeyer, J. R. (2013). A quantum question order model supported by empirical tests of an a priori and precise prediction. Topics in Cognitive Science, 5, 689–710.

    Google Scholar 

  • Wang, Z., Solloway, T., Shiffrin, R. M., & Busemeyer, J. R. (2014). Context effects produced by question orders reveal quantum nature of human judgments. PNAS, 111, 9431–9436.

    Article  Google Scholar 

  • White, L. C., Pothos, E. M., & Busemeyer, J. R. (2014). Sometimes it does hurt to ask: The constructive role of articulating impressions. Cognition, 133(1), 48–64.

    Article  Google Scholar 

  • Yuen, H. P. (1987). Characterization and realization of general quantum measurements. In M. Namiki et al. (Ed.), Proceedings of the 2nd International Symposium of Foundations of Quantum Mechanics (pp. 360–363).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Khrennikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khrennikov, A. (2022). Quantum-Like Cognition and Rationality: Biological and Artificial Intelligence Systems. In: Miranda, E.R. (eds) Quantum Computing in the Arts and Humanities. Springer, Cham. https://doi.org/10.1007/978-3-030-95538-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95538-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95537-3

  • Online ISBN: 978-3-030-95538-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics