Skip to main content
Log in

Pricing storage of outbound containers in container terminals

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

In container yard of container terminals, a storage charge is imposed to encourage customers to limit the space required for their containers. This study addresses the storage price scheduling problem for the storage of outbound containers. The price schedule consists of the free-time limit, which is the maximum duration for a container to stay in the yard without any charge, and storage charge per day for storing a container past the free-time-limit. Empirical data suggests that the efficiency of loading operations significantly depends on the space utilized by a vessel’s outbound containers. Mathematical models are developed to determine the optimal storage price schedule in such a manner that the terminal’s total profit is maximized or the total system’s cost is minimized. Both single and multi-vessel cases are considered. Properties of the optimal solution are derived from the mathematical models and numerical experiments are conducted to validate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bazzazi M, Safaei N, Javadian N (2009) A genetic algorithm to solve the storage space allocation problem in a container terminal. Comput Ind Eng 56(1):44–52

    Article  Google Scholar 

  • Carlo HJ, Vis IFA, Roodbergen KJ (2014) Storage yard operations in container terminals: literature overview, trends, and research directions. Eur J Oper Res 235:412–430

    Article  MATH  Google Scholar 

  • Castilho BD, Daganzo CF (1991) Optimal pricing policies for temporary storage at ports. Transp Res Rec 1313:66–74

    Google Scholar 

  • Chen L, Lu Z (2012) The storage location assignment problem for outbound containers in a maritime terminal. Int J Prod Econ 135:73–80

    Article  Google Scholar 

  • Cordeau J-F, Gaudioso M, Laporte G, Moccia L (2007) The service allocation problem at the Gioia Tauro Maritime Terminal. Eur J Oper Res 176:1167–1184

    Article  MATH  Google Scholar 

  • Dekker R, Voogd P, Van Asperen E (2006) Advanced methods for container stacking. OR Spectrum 28:563–586

    Article  MATH  Google Scholar 

  • Holguin-Veras J, Jara-Diaz S (1999) Optimal pricing for priority service and space allocation in container ports. Transp Res Part B 33(2):81–106

    Article  Google Scholar 

  • Holguin-Veras J, Jara-Diaz S (2006) Preliminary insights into optimal pricing and space allocation at intermodal terminals with elastic arrivals and capacity constraint. Netw Spat Econ 6:25–38

    Article  MathSciNet  MATH  Google Scholar 

  • Holguin-Veras J, Jara-Diaz S (2010) Optimal two-part pricing and capacity allocation with multiple user classes and elastic arrivals at constrained transportation facilities. Netw Spat Econ 10(4):427–454

    Article  MathSciNet  MATH  Google Scholar 

  • Jang YT (1992) A study on the cost of ship’s time in port. Korea Institute of Ocean Science& Technology, BSPE00264-493-7

  • Kim KH, Kim HB (2002) The optimal sizing of the storage space and handling facilities for import containers. Transp Res Part B 36(9):821–835

    Article  Google Scholar 

  • Kim KH, Kim KY (2007) Optimal price schedules for storage of inbound containers. Transp Res Part B 41:892–905

    Article  Google Scholar 

  • Kim KY, Kim KH (2010) Pricing the storage of inbound containers with a discrete probability distribution of retrieval times. Int Eng Manag Sci 9(2):165–177

    Google Scholar 

  • Kim KH, Park KT (2003) A note on a dynamic space-allocation method for outbound containers. Eur J Oper Res 148:92–101

    Article  MATH  Google Scholar 

  • Lee Y, Hsu N-Y (2007) An optimization model for the container pre-marshalling problem. Comput Oper Res 34:3295–3313

    Article  MATH  Google Scholar 

  • Lee CY, Yu M (2012) Inbound container storage price competition between the container terminal and a remote container yard. Flex Serv Manuf J 24:320–348

    Article  Google Scholar 

  • Lee LH, Chew EP, Tan KC, Han Y (2006) An optimization model for storage yard management in transshipment hubs. OR Spectrum 28:539–561

    Article  MATH  Google Scholar 

  • Li M (2015) Yard storage planning for minimizing handling time of export containers. Flex Serv Manuf J 27(2):285–299

    Article  Google Scholar 

  • Lim A, Xu Z (2006) A critical-shaking neighborhood search for the yard allocation problem. Eur J Oper Res 174:1247–1259

    Article  MATH  Google Scholar 

  • Martin E, Kim KH, Saurí S (2015) Optimal space for storage yard considering yard inventory forecasts and terminal performance. Transp Res Part E Logist Transp Rev 82:101–128

    Article  Google Scholar 

  • Petering MEH (2015) Real-time container storage location assignment at an RTG-based seaport container transshipment terminal: problem description, control system, simulation model, and penalty scheme experimentation. Flexible Service and Manufacturing Journal 27(2):351–381

    Article  Google Scholar 

  • Rohatgi VK (1976) An introduction to probability theory and mathematical statistics. Wiley, New York, p 84

    MATH  Google Scholar 

  • Saurí S, Serra J, Martín E (2011) Evaluating pricing strategies for storage in import container terminals. Transp Res Rec 2238:1–7

    Article  Google Scholar 

  • Taleb-Ibrahimi M, Castilho BD, Daganzo CF (1993) Storage space vs handling work in container terminals. Transp Res Part B 12(1):13–32

    Article  Google Scholar 

  • Watanabe I (2001) Container terminal planning—a theoretical approach. WCN Publishing, Great Britain, p 59

    Google Scholar 

  • Woo YJ, Kim KH (2011) Estimating the space requirement for outbound container inventories in port container terminals. Int J Prod Econ 133:293–301

    Article  Google Scholar 

  • Woo, Y.J. and Kim, K.H. (2012) ‘Analysis of storage charging and re-marshaling for outbound containers in terminals’, Proceedings of the Asia Pacific Industrial Engineering & Management Systems Conference 2012, V. Kachitvichyanukul, H.T. Luong, and R. Pitakaso Eds., pp.536-541

  • Yu M, Kim KH, Lee C-Y (2015) Inbound container storage pricing schemes. IIE Trans 47:1–19

    Article  Google Scholar 

  • Zhang C, Liu J, Wan YW, Murty KG, Linn RJ (2003) Storage space allocation in container terminals. Transp Res Part B 37:883–903

    Article  Google Scholar 

  • Zhen L (2014) Container yard template planning under uncertain maritime market. Transp Res Part E 69:199–217

    Article  Google Scholar 

  • Zhen L, Jiang X, Lee LH, Chew EP (2013) A review on yard management in container terminals. Ind Eng Manag Syst 12(4):289–305

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kap Hwan Kim.

Appendices

Appendix 1: Proof of Property 1

We will show that for a given value of \(T_{S}\), \(E\left( {PF(F_{1} ,S_{1} )} \right) > E\left( {PF(0,S_{0} )} \right)\) for an \(F_{1} > 0\), where \(S_{1} = s_{0} + c_{0} /(T_{S} - F)\) and \(S_{0} = s_{0} + c_{0} /T_{S}\), which are obtained from Eq. (5). The objective function \(E(PF(F,S)) = E(PF(F)) = \int_{F}^{{T_{S} }} {\left( {s_{0} + \frac{{c_{0} }}{{T_{S} - F}}} \right)(x - F)f(x)dx} - c_{t} a\frac{u}{v}\left\{ {\int_{0}^{{T_{S} }} {xf(x)dx} + f\int_{{T_{S} }}^{\infty } {f(x)dx} } \right\}\).

\(\frac{dE(PF(F))}{dF} = \int_{F}^{{T_{S} }} {\frac{{c_{0} }}{{(T_{S} - F)^{2} }}(x - F)f(x)dx} - \int_{F}^{{T_{S} }} {\left( {s_{0} + \frac{{c_{0} }}{{T_{S} - F}}} \right)f(x)dx - } c_{t} a\frac{u}{v}\int_{{T_{S} }}^{\infty } {f(x)dx}\). Note that \(\int_{F}^{{T_{S} }} {\frac{{c_{0} }}{{(T_{S} - F)^{2} }}(x - F)f(x)dx \le } \int_{F}^{{T_{S} }} {\left( {\frac{{c_{0} }}{{T_{S} - F}}} \right)f(x)dx}\) because \(0 \le \frac{x - F}{{T_{S} - F}} \le 1\) for \(F \le x \le T_{S}\). Thus, \(\frac{dE(PF(F))}{dF} \le - \int_{F}^{{T_{S} }} {s_{0} f(x)dx - } c_{t} a\frac{u}{v}\int_{{T_{S} }}^{\infty } {f(x)dx} \le 0\).

Hence, all these terms are non-positive. Namely, E(PF(F)) is a non-increasing function of F. Thus, F* = 0.

Appendix 2: Proof of Property 2

Let \(f(x) = 1/b, \quad 0 \le x \le b\), which is a uniform distribution. Then, the objective function becomes \(E\left({PF(S)} \right) = S\int_{0}^{{\hbox{min} \left\{{\frac{{c_{0}}}{{S - s_{0}}},\,b} \right\}}} {x\frac{1}{b}dx} - c_{t} a\frac{u}{v}\int_{0}^{{\hbox{min} \left\{{\frac{{c_{0}}}{{S - s_{0}}},\,b} \right\}}} {x\frac{1}{b}dx}\).

Case 1

\(c_{0}/(S - s_{0}) \le b\) , which can be rewritten as \(S \ge c_{0}/b + s_{0}\).

$$E\left({PF(S)} \right) = \frac{1}{2b}\left({S - \frac{{ac_{t} u}}{v}} \right)\left({\frac{{c_{0}}}{{S - s_{0}}}} \right)^{2}$$
$$\frac{{dE\left( {PF(S)} \right)}}{dS} = \frac{1}{2b}\left\{ {\left( {\frac{{c_{0} }}{{S - s_{0} }}} \right)^{2} - 2\left( {S - \frac{{ac_{t} u}}{v}} \right)\frac{{c_{0}^{2} }}{{(S - s_{0} )^{3} }}} \right\} = \frac{{c_{0}^{2} }}{{2b(S - s_{0} )^{3} }}\left( { - S - s_{0} + \frac{{2ac_{t} u}}{v}} \right)$$

Because \(S \ge c_{0}/b + s_{0}\), which will be denoted as S1, \({{c_{0}^{2}} \mathord{\left/{\vphantom {{c_{0}^{2}} {\left({S - s_{0}} \right)^{3}}}} \right. \kern-0pt} {\left({S - s_{0}} \right)^{3}}} \ge 0\). Thus, if \(S \ge - s_{0} + \frac{{2ac_{t} u}}{v}\), which we denote as S2, then \(\frac{{dE\left({PF(S)} \right)}}{dS} \le 0\). Namely, E(PF(S)) is a decreasing function for \(S \ge S_{2}\), and an increasing function for \(S \le S_{2}\).

(a) If \(S_{{^{1}}} < S_{{^{2}}}\), then the maximum objective value is obtained at S = S 2. (b) If \(S_{1} \ge S_{2}\), then in the range of \(S \ge S_{1}\), E(PF(S)) decreases as the value of S increases. Thus, the maximum objective value is obtained at S = S 1. From constraint (6) and \(\frac{u}{b}\int_{0}^{{\frac{{c_{0}}}{{S - s_{0}}}}} {xdx} = \frac{u}{2b}\left({\frac{{c_{0}}}{{S - s_{0}}}} \right)^{2} = \frac{{uc_{0}^{2}}}{{2b(S - s_{0})^{2}}}\), we obtain \(\frac{{uc_{0}^{2}}}{{2b(S - s_{0})^{2}}} \le v\), which is equivalent to \(S \le s_{0} - c_{0} \sqrt {u/(2bv)}\) or \(S \ge s_{0} + c_{0} \sqrt {u/(2bv)}\). However, because \(S \ge s_{0} , (c) S \ge s_{0} + c_{0} \sqrt {u/(2bv)}\), which will be denoted as S3. From (a), (b), and (c), (d) the maximum objective value is obtained at S = max {S1, S2, and S3}.

Case 2

\(S < c_{0}/b + s_{0}\).

In this case, \(E\left({PF(S)} \right) = S\int_{0}^{b} {x\frac{1}{b}dx} - c_{t} a\frac{u}{v}\int_{0}^{b} {x\frac{1}{b}dx} = \frac{b}{2}\left({S - \frac{{ac_{t} u}}{v}} \right)\). Namely, \(E\left({PF(S)} \right)\) is an increasing function of S. Now, consider the constraint in (6). Following the analysis in case 1, we know that \(S \ge S_{2}\). If \(S_{3} \le S_{1}\), then clearly E(PF(S)) is maximized at S1, If S3 > S1, then there is no feasible solution. Thus, in case 2, if there is a feasible solution, then E(PF(S)) is maximized at S = S1.

Considering cases 1 and 2 simultaneously, E(PF(S)) is maximized at S = max {S1, S2, and S3}.

Appendix 3: Proof of Property 3

Suppose that \(f(x) = 1/b,\;0 \le x \le b\), Then, the objective function can be expressed as

$$E\left({TC(F,S)} \right) = \left({c_{t} + \frac{{c_{v}}}{g}} \right)\frac{{au\int_{0}^{{T_{S}}} {C_{R} (y)dy}}}{v} + \int_{{T_{S}}}^{\infty} {\{c_{0} + s_{0} (x - F)\} f(x)dx}= \left({c_{t} + \frac{{c_{v}}}{g}} \right)\frac{au}{v}\left({\int_{0}^{{\hbox{min} \left\{{\frac{{c_{0}}}{{S - s_{0}}} + F,b} \right\}}} {\frac{x}{b}dx} + F\int_{{\hbox{min} \left\{{\frac{{c_{0}}}{{S - s_{0}}} + F,b} \right\}}}^{b} {\frac{1}{b}dx}} \right) + \int_{{\hbox{min} \left\{{\frac{{c_{0}}}{{S - s_{0}}} + F,b} \right\}}}^{b} {(c_{0} + s_{0} (x - F))\frac{1}{b}dx}$$

Case 1

\({{c_{0}} \mathord{\left/{\vphantom {{c_{0}} {(S -}}} \right. \kern-0pt} {(S -}}s_{0}) + F \ge b\). Then, the objective function becomes

$$E\left({(TC(F,S)} \right) = \left({c_{t} + \frac{{c_{v}}}{g}} \right)\frac{au}{v}\left({\int_{0}^{b} {\frac{x}{b}dx} + F\int_{b}^{b} {\frac{1}{b}dx}} \right) + \int_{b}^{b} {\left\{{c_{0} + s_{0} (x - F)} \right\}\frac{1}{b}dx} = \frac{abu}{2v}\left({c_{t} + \frac{{c_{v}}}{g}} \right)$$

which remains constant for all values of F and S.

Case 2

\({{c_{0}} \mathord{\left/{\vphantom {{c_{0}} {(S -}}} \right. \kern-0pt} {(S -}}s_{0}) + F < b\) the objective function becomes

$$E\left({TC(F,S)} \right) = \left({c_{t} + \frac{{c_{v}}}{g}} \right)\frac{au}{v}\left({\int_{0}^{{\frac{{c_{0}}}{{S - s_{0}}} + F}} {\frac{x}{b}dx} + F\int_{{\frac{{c_{0}}}{{S - s_{0}}} + F}}^{b} {\frac{1}{b}dx}} \right) + \int_{{\frac{{c_{0}}}{{S - s_{0}}} + F}}^{b} {\{c_{0} + s_{0} (x - F)\} \frac{1}{b}dx}$$
$$= \frac{au}{2bv}(c_{t} + \frac{{c_{v}}}{g})\left\{{\frac{{c_{0}^{2}}}{{(S - s_{0})^{2}}} - F^{2} + 2Fb} \right\} - \frac{{s_{0} c_{0}^{2}}}{{2b(S - s_{0})^{2}}} - \frac{{c_{0}^{2}}}{{b(S - s_{0})}} + \frac{{s_{0} F^{2}}}{2b} - \frac{{c_{0} F}}{b} + \frac{{s_{0} b}}{2} + c_{0} - Fs_{0}.$$
$$\frac{{\partial E\left({TC(S,F)} \right)}}{\partial F} = F\left\{{\frac{{s_{0}}}{b} - \frac{au}{bv}\left({c_{t} + \frac{{c_{v}}}{g}} \right)} \right\} + \frac{au}{v}\left({c_{t} + \frac{{c_{v}}}{g}} \right) - \frac{{c_{0}}}{b} - s_{0}.$$

From \(\frac{{\partial E\left({TC(S,F)} \right)}}{\partial F} = 0\), \(F = \frac{{vg(c_{0} + bs_{0}) - abu(gc_{t} + c_{v})}}{{vgs_{0} - au(gc_{t} + c_{v})}}\). Let this value of F be denoted as F1. Note that the first term of E(TC(F,S)), \(\left({c_{t} + \frac{{c_{v}}}{g}} \right)\frac{{au\int_{0}^{{T_{S}}} {C_{R} (y)dy}}}{v}\), represents the cost at the PCT and \(\int_{0}^{{T_{s}}} {C_{R} (y)dy}\) indicates the expected DTY of a container at the terminal. Thus, \(\frac{au}{v}\left({c_{t} + \frac{{c_{v}}}{g}} \right)\) represents the additional cost for a container to stay at the terminal one more unit time. In addition, s0 represents the additional storage cost for a container to stay at an ODCY one more unit time. If s0 is greater than \(\frac{au}{v}\left({c_{t} + \frac{{c_{v}}}{g}} \right)\), then no container may have to be stored at an ODCY (consider that c0 needs to be additionally paid for the storage at an ODCY). Thus, \(s_{0} < \frac{au}{v}\left({c_{t} + \frac{{c_{v}}}{g}} \right)\). Thus, for a given value of S, E(TC(S,F)) monotonically increases when F < F1 and monotonically decreases when F ≥ F1. Thus, F* = 0 or b. Note that \(\min_{S} E\left({TC(S,b)} \right) = E\left({TC(0,0)} \right)\), because in both cases, no container visits an ODCY. However, in general, \(E\left({TC(0,0)} \right) \ge \min_{S} E\left({TC(0,S)} \right)\). Thus, F* = 0.

Next, \(\frac{{\partial E\left({TC(S,F)} \right)}}{\partial S} = \frac{{c_{0}^{2}}}{{b(S - s_{0})^{3}}}\left\{{S - \frac{au}{v}\left({c_{t} + \frac{{c_{v}}}{g}} \right)} \right\}.\)

Considering S > s0, E(TC(S,F)) decreases until S reaches \(\frac{au}{v}\left({c_{t} + \frac{{c_{v}}}{g}} \right)\) and then increases. Note also that this function is valid in the range satisfying \(\frac{{c_{0}}}{{S - s_{0}}} + F(= 0) \le b\), which is equivalent to \(S_{1} = c_{0}/b + s_{0}\). Let, \(S_{1} = c_{0}/b + s_{0}\) and \(S_{4} = au\left({c_{t} + c_{v}/g} \right)/v\). From constraint (6), we obtain \(\frac{{uc_{0}^{2}}}{{2b(S - s_{0})^{2}}} \le v\), which can be converted to \(S \ge s_{0} + c_{0} \sqrt {\frac{u}{2bv}}\). Let \(S_{3} = s_{0} + c_{0} \sqrt {u/(2bv)}\). Therefore, TC(S,F) is minimized at \(S = Max\{S_{1},\,\,S_{3},S_{4} \}\). If \(S^{*} = S_{1}\), then E(TC(S*,0)) is the same as the objective value of case 1, which is a constant for all the values of (S,F) and thus all the values of (S,F) satisfying \(c_{0}/(S - s_{0}) + F \ge b\) become the optimal solutions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, Y.J., Song, JH. & Kim, K.H. Pricing storage of outbound containers in container terminals. Flex Serv Manuf J 28, 644–668 (2016). https://doi.org/10.1007/s10696-016-9245-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-016-9245-7

Keywords

Navigation