Skip to main content
Log in

Advanced methods for container stacking

  • Regular Article
  • Published:
OR Spectrum Aims and scope Submit manuscript

Abstract

In this paper, we study stacking policies for containers at an automated container terminal. It is motivated by the increasing pressure on terminal performance put forward by the increase in the size of container ships. We consider several variants of category stacking, where containers can be exchanged during the loading process. The categories facilitate both stacking and online optimization of stowage. We also consider workload variations for the stacking cranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • de Castilho B, Daganzo CF (1993) Handling strategies for import containers at marine terminals. Transp Res B 27:151–166

    Article  Google Scholar 

  • Celen HP, Slegtenhorst RJW, Van der Ham RTh, Nagel A, Van den Berg J, De Vos Burchart R, Evers JJM, Lindeijer DG, Dekker R, Meersmans PJM, De Koster MJM, Van der Meer R, Carlebur AFC, Nooijen FJAM (1999) FAMAS–NewCon: phase 1: starting points, Phase 2: architecture integrating information system, CTT publicatiereeks 32 (in Dutch)

  • Chen T, Lin K, Yuang YC (2000) Empirical studies on yard operations part 2: quantifying unproductive moves undertaken in quay transfer operations. Marit Policy Manage 27:191–207

    Article  Google Scholar 

  • Cullinane K, Khanna M (2000) Economies of scale in large containerships: optimal size and geographical implications. J Transp Geogr 8:181–195

    Article  Google Scholar 

  • Duinkerken MB, Evers JJM, Ottjes JA (2001) A simulation model for integrating quay transport and stacking policies in automated terminals. In: Proceedings of the 15th European Simulation Multiconference (ESM2001), SCS, Prague

  • Kim KH (1997) Evaluation of the number of rehandles in container yards. Comput Ind Eng 32:701–711

    Article  Google Scholar 

  • Kim KH, Bae JW (1998) Re-marshalling export containers in port container terminals. Comput Ind Eng 35:655–658

    Article  Google Scholar 

  • Kim KY, Kim KH (1998) The optimal determination of the space requirement and the number of transfer cranes for import containers. Comput Ind Eng 35:427–430

    Article  Google Scholar 

  • Kim KH, Kim HB (1999) Segregating space allocation models for container inventories in port container terminals. Int J Prod Econ 59:415–423

    Article  Google Scholar 

  • Kim KH, Park YM, Ryu KR (2000) Deriving decision rules to locate export containers in container yards. Eur J Oper Res 124:89–101

    Article  Google Scholar 

  • Meersmans PJM, Dekker R (2001) Operations research supports container handling. Report Econometric Institute EI/2001-22, Erasmus University Rotterdam

    Google Scholar 

  • Sculli D, Hui CF (1988) Three-dimensional stacking of containers. Omega 16:585–594

    Article  Google Scholar 

  • Steenken D, Voß S, Stahlbock R (2004) Container terminal operation and operations research—a classification and literature review. OR Spectrum 26:3–49

    Article  Google Scholar 

  • Taleb-Ibrahimi M, De Castilho B, Daganzo CF (1993) Storage space vs handling in container terminals. Transport Res B 27:13–32

    Article  Google Scholar 

  • Upward Systems (1994) Must simulation software: user and reference manual. Delft, The Netherlands

    Google Scholar 

  • Vis IFA, de Koster R (2003) Transshipment of containers at a container terminal: an overview. Eur J Oper Res 147:1–16

    Article  Google Scholar 

  • Voogd P, Dekker R, Meersmans PJM (1999) FAMAS–Newcon: a generator program for stacking in the reference case. Report Econometric Institute EI-9943/A

Download references

Acknowledgements

The authors would like to thank A. Nagel, F.J.A.M. Nooijen, and R.Th. van der Ham (ECT) for assistance during the research. The authors also thank the referees for useful comments, which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rommert Dekker.

Appendices

Appendix A

Experiments

A0:

This is a reference experiment that uses random stacking without exchanges.

A:

This experiment considers category stacking for all modalities.

B:

Category stacking without exchangeability for short-sea/feeder and truck containers.

C:

Same as the previous experiment, with an added preference for ground locations in the random part of the algorithm.

D:

Experiment C with 29 lanes instead of 27.

E:

Experiment D, with the workload control variable set to 80% rather than 88.9%.

F:

Experiment E with alternative reefer stacking policy (no workload control variable for reefer containers though).

G:

Experiment F, with reefer containers also subject to the workload control feature with a limit of 80%.

H:

Experiment G with the closest transfer point feature. This feature selects an empty pile closest to the transfer point at which the container will leave the stack.

I:

This setup is based on experiment H: We allow the stacking of regular containers in the third part of the stack (this part is usually reserved for reefer containers).

J:

In this modification of experiment I, we exclude import containers from the closest transfer point rule.

K:

Experiment I, with the option of exchanges between different lanes. Exchanges are considered whenever the ASC workload of the selected lane exceeds 80%. Feasible exchange locations are limited to the top containers of each pile and are located using a random search approach.

L:

Same as experiment K, with the expected departure time rule: a container can only be stacked on top of other containers if the new container has an expected departure time less than 3 h after the expected departure time of the current topmost container in the pile.

M:

Experiment L, but the expected departure time of the new container must be before or equal to the expected departure time of the topmost container of the pile.

N:

Experiment K with the ASC workload feature for incoming containers, for which multiple uniform piles in different lanes have been located.

O:

Experiment N, with the addition of the ASC workload feature for outgoing, regular (i.e., nonreefer) containers.

Appendix B

Numerical results of the experiments

Experiment

A0

A

B

C

D

E

F

G

H

I

J

k

L

M

N

O

Reshuffle occasions

                

 Total

60.9

31.0

31.0

16.1

13.3

13.4

11.4

11.4

10.4

6.9

7.1

6.8

6.2

7.0

6.8

6.9

 Jumbo

67.8

12.4

18.5

10.2

8.5

8.3

4.3

4.1

3.6

2.1

2.3

2.1

1.8

2.4

2.0

1.4

 Deep-sea

55.9

12.3

19.5

11.4

9.4

9.5

5.0

4.8

4.1

2.2

2.5

2.2

2.4

2.8

2.3

2.3

 Short-sea/feeder

62.8

71.5

58.6

31.5

26.1

26.6

26.3

26.6

24.5

17.3

17.5

17.2

15.2

16.9

17.1

17.9

 Export

55.9

35.1

34.2

18.7

15.5

15.6

12.9

12.9

11.8

8.0

8.2

7.9

7.1

8.1

7.9

8.0

 Truck

68.0

58.4

32.3

26.7

26.4

26.5

26.6

26.0

16.2

16.3

14.9

12.5

14.9

16.1

16.1

 Rail

9.5

14.7

3.8

3.0

3.2

2.7

3.1

2.5

1.3

1.2

1.1

1.5

1.5

1.3

1.0

 Barge

8.8

13.8

3.9

2.8

2.9

2.8

2.9

2.4

1.4

1.4

1.1

1.5

1.6

1.2

1.3

 Import

19.2

21.8

8.7

7.0

7.1

6.9

7.0

6.5

3.9

3.9

3.5

3.4

3.8

3.8

3.7

Reshuffles performed

                

 Total

89.3

46.1

41.8

23.0

19.0

19.0

16.0

16.2

14.8

9.7

9.9

9.5

8.8

9.6

9.5

9.8

 Jumbo

99.7

15.7

23.5

13.4

11.3

10.8

5.5

5.3

4.7

2.8

3.0

2.8

2.0

2.8

2.6

1.8

 Deep-sea

81.8

16.4

25.4

15.3

13.0

13.1

6.1

5.8

5.0

2.7

3.0

2.6

2.8

3.1

2.7

2.7

 Short-sea/feeder

92.1

112.2

82.2

47.0

38.5

39.0

38.3

39.3

36.0

24.7

25.1

24.7

23.0

24.1

24.5

26.1

 Export

81.9

52.9

46.6

26.8

22.2

22.3

18.3

18.5

16.8

11.2

11.5

11.2

10.3

11.1

11.0

11.4

 Truck

103.5

83.9

49.0

40.2

39.2

39.4

39.5

39.1

24.0

24.3

22.6

20.1

22.7

24.2

24.8

 Rail

10.8

17.0

4.3

3.4

3.7

3.0

3.5

2.8

1.4

1.4

1.2

1.6

1.6

1.4

1.1

 Barge

9.8

15.9

4.5

3.2

3.4

3.2

3.3

2.7

1.5

5.4

1.2

1.6

1.6

1.4

1.3

 Import

26.2

27.9

12.1

9.6

9.6

9.4

9.6

9.0

5.3

9.9

4.9

4.8

5.2

5.3

5.3

No position (per 100,000)

                

 For new container

0

0

0

96

1

3

0

1

0

0

0

0

0

0

0

 For reshuffle

74

40

28

42

25

25

0

0

0

15

23

18

24

36

18

Ground locations: maximum

                

 Overall

84.5

75.3

79.9

91.1

89.2

89.1

88.7

87.8

89.4

95.2

94.7

95.7

96.4

96.5

95.1

95.2

 Part 1 of the stack

89.6

80.8

86.3

98.7

97.7

97.5

97.5

97.4

99.4

98.4

97.8

98.9

99.6

99.8

98.4

98.3

 Part 2 of the stack

50.6

50.2

51.4

48.6

48.1

46.7

58.2

58.2

58.2

58.2

58.2

58.2

57.9

57.9

58.2

58.2

 Part 3 of the stack

68.9

50.4

50.6

53.5

42.2

40.2

22.4

22.2

14.4

Ground locations: average

                

 Overall

77.4

64.7

70.3

81.3

79.0

79.0

78.3

78.2

79.4

83.9

83.5

84.0

85.1

85.3

83.9

84.3

 Part 1 of the stack

83.5

69.6

76.5

89.0

87.5

87.4

87.4

87.4

89.3

87.6

87.1

87.7

88.9

89.0

87.5

88.0

 Part 2 of the stack

38.7

38.9

38.6

39.2

37.5

38.1

38.7

38.7

38.7

38.7

38.7

38.6

38.7

38.6

38.6

38.7

 Part 3 of the stack

47.1

36.0

31.4

36.5

24.5

24.8

13.6

13.3

8.8

Workload ASC: overall

                

 Maximum (%)

301.9

312.6

289.4

270.4

302.5

260.8

246.5

287.8

220.2

278.9

258.9

259.1

193.6

238.1

214.0

367.3

 Average (%)

31.2

27.0

26.8

25.4

23.3

23.4

23.3

23.3

22.5

22.3

22.3

22.3

22.3

22.4

22.1

22.0

 Percentage >80%

10.3

7.3

7.1

6.1

5.1

4.7

4.6

4.6

3.9

3.7

3.7

3.1

3.1

3.2

2.6

2.0

 Percentage >90%

7.7

5.3

5.1

4.4

3.5

2.8

2.7

2.7

2.2

2.1

2.1

1.2

1.2

1.3

1.0

0.9

 Percentage >100%

5.7

3.8

3.6

3.1

2.4

1.7

1.6

1.6

1.2

1.1

1.1

0.5

0.5

0.5

0.3

0.4

 Percentage >110%

4.1

2.7

2.5

2.2

1.6

1.0

1.0

1.0

0.7

0.6

0.6

0.2

0.2

0.2

0.1

0.2

 Percentage >120%

3.0

1.9

1.7

1.5

1.1

0.6

0.6

0.6

0.4

0.3

0.4

0.1

0.1

0.1

0.1

0.1

Workload ASC: jumbo

                

 Maximum (%)

312.6

289.4

270.4

302.5

260.8

246.5

225.3

220.2

278.9

258.9

259.1

193.6

218.0

214.0

367.3

 Average (%)

59.5

60.4

57.6

53.2

53.2

53.0

52.9

50.0

49.6

49.8

49.5

49.4

49.8

49.4

49.0

 Percentage >80%

28.4

28.6

25.9

22.2

21.3

21.1

20.7

17.7

16.8

17.3

14.5

14.6

15.3

12.7

9.5

 Percentage >90%

22.3

22.0

19.8

16.5

13.3

13.1

12.8

10.5

9.8

10.4

5.9

6.0

6.3

4.8

4.4

 Percentage >100%

17.1

16.5

14.7

11.8

8.3

8.0

7.8

6.3

5.6

5.9

2.3

2.3

2.6

1.7

1.9

 Percentage >110%

13.0

12.3

10.8

8.4

5.2

5.0

5.0

3.7

3.2

3.3

1.0

1.0

1.1

0.7

0.9

 Percentage >120%

9.6

8.8

7.8

5.9

3.1

3.1

3.0

2.1

1.8

1.9

0.5

0.4

0.5

0.3

0.5

Workload ASC: deep-sea

                

 Maximum (%)

266.3

242.7

239.8

226.5

190.9

199.0

287.8

206.5

204.3

197.9

176.6

159.6

238.1

213.4

205.8

 Average (%)

39.7

40.1

38.3

35.2

35.3

35.1

35.0

33.2

33.0

33.1

33.0

33.1

33.2

32.9

32.5

 Percentage >80%

11.8

11.8

10.1

8.1

7.3

7.0

7.0

5.7

5.4

5.4

4.2

4.4

4.3

3.3

2.8

 Percentage >90%

8.0

8.2

6.8

5.1

4.0

4.0

4.0

2.9

2.9

2.8

1.7

1.8

1.6

1.2

1.2

 Percentage >100%

5.4

5.4

4.4

3.2

2.2

2.2

2.2

1.6

1.5

1.4

0.6

0.7

0.6

0.4

0.5

 Percentage >110%

3.5

3.5

2.9

2.0

1.3

1.2

1.2

0.8

0.7

0.7

0.2

0.3

0.3

0.2

0.2

 Percentage >120%

2.3

2.2

1.8

1.1

0.7

0.7

0.7

0.4

0.4

0.4

0.1

0.1

0.1

0.1

0.1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekker, R., Voogd, P. & van Asperen, E. Advanced methods for container stacking. OR Spectrum 28, 563–586 (2006). https://doi.org/10.1007/s00291-006-0038-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00291-006-0038-3

Keywords

Navigation