Skip to main content
Log in

Salinity tolerance in Clarias gariepinus (Burchell, 1822): insight on blood parameter variations and gill histological changes

  • Research
  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study was designed to evaluate the tolerance of Clarias gariepinus juveniles to a gradual and abrupt increase in salinity over time. To this effect, C. gariepinus juveniles were exposed to three salinity incremental protocols namely 1 g L−1 day−1, 5 g L−1 day−1, and 10 g L−1 day−1. Changes in the hematological parameters and the gill histology of fish were analyzed to determine the impact of osmotic stress on the health status of the fish and its osmoregulatory ability. The result obtained showed that juveniles of C. gariepinus can tolerate salinity stress up to 14 g L−1. At 15 g L−1 and beyond, all samples died regardless of gradual (i.e., 1 g L−1 day−1 administered for 15 days) or abrupt salinity exposure (i.e., 5 g L−1 day−1 administered for three days and 10 g L−1 day−1 administered for two days). Interestingly, more than 90% of the fish survived a direct 10 g L−1 exposure for 24 h without prior acclimation. The hematological parameters accessed in the fish exposed to 10 g L−1 (either gradually or abruptly) showed a significant increase in the white blood cells and a decrease in the red blood cells, packed cell volume, hemoglobin concentration, and all derived blood parameters. The results of the serum biochemistry show a lower total protein and albumin in the salinity-treated fish compared to the control group. However, the serum glucose and the plasma electrolytes (i.e., K+, Na+, and Cl) were higher in the former group than in the latter. Aside from the stress response expressed in the blood parameters, severe gill degenerations were seen in the histological micrograph obtained for the salinity-treated fish, while the control had a near-normal gill architecture. It was concluded that C. gariepinus could tolerate salinity exposure of 10 g L−1 day−1 (administered gradually or abruptly) and below without killing the fish within 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data for this research will be made available upon request from any of the corresponding authors.

Code availability

Not applicable.

References

  • Alalibo OO, Gabriel UU, Akinrotimi OA (2019) Changes in metabolites of African catfish (Clarias gariepinus) exposed to different salinity levels. Int J Innov Stud Aquatic Biol Fisheries 5(4):1–7

    Google Scholar 

  • Arimoro FO, Ikomi RB, Nwadukwe FO, Eruotor OD, Edegbene AO (2014) Fluctuating salinity levels and an increasing pollution gradient on fish community structure and trophic levels in a small creek in the Niger Delta. Nigeria Int Aquatic Res 6(4):187–202

    Article  Google Scholar 

  • Bais UE, Lokhande MV (2012) Effect of cadmium chloride on histopathological changes in the freshwater fish Ophiocephalus striatus (Channa). Int J Zool Res 8:23–32

    Article  Google Scholar 

  • Barros MM, Lim C, Klesius PH (2002) Effect of iron supplementation to cotton seed meal diets on growth performance of channel catfish, Ictalurus punctatus. J Appl Aquac 10:86–92

    Google Scholar 

  • Bernet D, Schmidt H, Meier W, Burkhardt-holm P, Wahli T (1999) Histopathology in fish: proposal for a protocol to assess aquatic pollution. J Fish Disease 22:25–34

    Article  Google Scholar 

  • Bœuf G, Payan P (2001) How should salinity influence fish growth? Comp Biochem Physiol c: Toxicol Pharmacol 130(4):411–423

    PubMed  Google Scholar 

  • Campbell TW, Murru F (1990) An introduction to fish hematology. Compendium Continuing Educ Veterinary Sci 12:525–533

    Google Scholar 

  • Cañedo-Argüelles M, Kefford B, Schäfer R (2019) Salt in freshwaters: causes, effects and prospects-introduction to the theme issue. Philos Trans R Soc B 374(1764):20180002

    Article  Google Scholar 

  • Capkin E, Birincioglu S, Altinok I (2009) Histopathological changes in rainbow trout (Oncorhynchus mykiss) after exposure to sublethal composite nitrogen fertilizers. Ecotoxicol Environ Saf 72:1999–2004

    Article  CAS  PubMed  Google Scholar 

  • Chervinski J (1984) Salinity tolerance of young catfish, Clarias lazera (Burchell). J Fish Biol 25(2):147–149

    Article  Google Scholar 

  • Choudhury D, Pal AK, Sahu NP, Kumar S, Das SS, Mukherjee SC (2005) Dietary yeast RNA supplementation reduces mortality by Aeromonas hydrophila in rohu (Labeo rohita L.) juveniles. Fish Shellfish Immunology 19:281–291

    Article  CAS  PubMed  Google Scholar 

  • Clay D (1977) Preliminary observations on salinity tolerance of Clarias gariepinus from Israel. Israeli J Aquac (bamidgeh) 29:102–109

    Google Scholar 

  • Dacie JV, and Lewis SM (1995) Practical haematology. In Practical hæmatology, pp 609–609

  • Dacie JV, Lewis SM (2001) Practical haematology, 9th edn. Churchill, London, p 633

    Google Scholar 

  • Das P, Ayyappan S, Das B, Jena J (2004) Nitrite toxicity in Indian major carps: sublethal effect on selected enzymes in fingerlings of Catla catla, Labeo rohita and Cirrhinus mrigala. Comp Biochem Physiol c: Toxicol Pharmacol 138(1):3–10

    CAS  PubMed  Google Scholar 

  • Davis AK, Maney DL, Maerz JC (2008) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22(5):760–772

    Article  Google Scholar 

  • Drabkin DR (1945) Crystallographic and optical properties of human hemoglobin: a proposal for the standardization of hemoglobin. The Am J Med Sci 209:268–270

    CAS  Google Scholar 

  • Dumas BT, Biggs HG (1972) Standard methods of clinical chemistry. Ed., Academic Press: New York

  • Dutta HM, Richmonds CR, Zeno T (1993) Effects of diazinon on the gills of Bluegill sunfish, Lepomis macrochirus. J Environ Pathol Toxicol Oncol 12:219–227

    CAS  PubMed  Google Scholar 

  • Eckert SM, Yada T, Shepherd BS, Stetson MH, Hirano T, Grau EG (2001) Hormonal control of osmoregulation in the channel catfish Ictalurus panctatus. Gen Comp Endocrinol 122:270–286

    Article  CAS  PubMed  Google Scholar 

  • Eddy FB (1982) Osmotic and ionic regulation in captive fish with particular reference to salmonids. Comparative Biochem Physiol 72(13):125–141

    Google Scholar 

  • El-Sayed, AFM (2006) Tilapia culture in salt water: environmental requirements, nutritional implications and economic potentials. Avances en Nutricion Acuicola, Pp 95–106

  • Erhunmwunse NO, Ainerua MO (2013) Characterization of some blood parameters of African catfish (Clarias gariepinus). Am -Eurasian J Toxicol Sci 5(3):72–76

    Google Scholar 

  • Fernandes MN, Mazon AF (2003) Environmental pollution and fish gill morphology. In: Val AL, Kapoor BG (eds) Fish Adaptations. Science Publication, Enfield, USA, pp 203–231

    Google Scholar 

  • Fuzzen MLM, Bernier NJ, Van Der Kraak G (2011) Differential effects of 17β-estradiol and 11-ketotestosterone on the endocrine stress response in zebrafish (Danio rerio). Gen Comp Endocrinol 170(2):365–373

    Article  CAS  PubMed  Google Scholar 

  • Gabriel UU, Ezeri GNO, Opabunmi OO (2004) Influence of sex, source, health status and acclimation on the haematology of Clarias gariepinus (Burch, 1822). Afr J Biotech 3:463–467

    Article  Google Scholar 

  • Gabriel UG, Gbulubo AJ, Deekae S (2012) Salinity tolerance of larvae of african catfish Clarias gariepinus (♀) × Heterobranchus bidorsalis (♂) hybrid. Animal Res Int 9(3):1654–1664

    Google Scholar 

  • Ghorashi S, Shajeei H, Shamoushaki N, Babakhani A (2013) Histopathological studies of kidneys and gills of Oncorhynchus mykiss exposed to sublethal concentration of ethylenediamine-tetraacetic acid (EDTA). Global Veterinaria 10:121–127

    CAS  Google Scholar 

  • Hudson J, Adams M, Jantawongsri K, Dempster T, Nowak BF (2022) Evaluation of low temperature and salinity as a treatment of Atlantic salmon against amoebic gill disease. Microorganisms 10(2):202. https://doi.org/10.3390/microorganisms10020202

    Article  PubMed  PubMed Central  Google Scholar 

  • Iheanacho SC, Odo GE (2020) Neurotoxicity, oxidative stress biomarkers and haematological responses in African catfish (Clarias gariepinus) exposed to polyvinyl chloride microparticles. Comp Biochem Physiol c: Toxicol Pharmacol 232:108741

    CAS  PubMed  Google Scholar 

  • Iheanacho SC, Ogunji JO, Ogueji EO, Nwuba LA, Nnatuanya IO, Ochang SN, Mbah CE, Usman I, Haruna M (2017) Comparative assessment of ampicillin antibiotic and ginger (Zingiber officinale) effects on growth, haematology and biochemical enzymes of Clarias gariepinus Juvenile. J Pharmacognosy Phytochem 6(3):761–767

    CAS  Google Scholar 

  • Iheanacho SC, Odo GE, Ezewudo BI (2021) Adulteration of aquafeed with melamine and melamine-formaldehyde chemicals; ex situ study of impact on haematology and antioxidant systems in Clarias gariepinus. Aquac Res 52(5):2078–2084

    Article  CAS  Google Scholar 

  • Iheanacho SC, Ekpenyong J, Nwose R, Adeolu AI, Offu P, Amadi-Eke A, Angus CI, Ogunji J (2023) Effects of burnt tire-ash on Na+/K+, Ca2+-ATPase, serum immunoglobulin and brain acetylcholinesterase activities in Clarias gariepinus (Burchell, 1822). Drug Chem Toxicol 46(3):503–509

    Article  CAS  PubMed  Google Scholar 

  • Iqbal KJ, Qureshi NA, Ashraf M, Rehman MHU, Khan N, Javid A, Majeed H (2012) Effect of different salinity levels on growth and survival of Nile tilapia (Oreochromis niloticus). J Animal Plant Sci 22(4):919–932

    CAS  Google Scholar 

  • Jeppesen E, Beklioğlu M, Özkan K, Akyürek Z (2020) Salinization increase due to climate change will have substantial negative effects on inland waters: a call for multifaceted research at the local and global scale. The Innovation, 1(2)

  • Jimoh O, Akinsorotan MJ, Olasunkanmi A, Omobepade BJ, Babalola PB, Fatoyinbo O (2020) Effects of prophylactics on growth, and hematology of African catfish, Clarias gariepinus (Burchell, 1822) fingerlings. Egypt J Aquat Biol Fisheries 24(1):471–481

    Article  Google Scholar 

  • Karan V, Vitorovic S, Tutundzic V, Poleksic V (1998) Functional enzymes activity and gill histology of carp after copper sulfate exposure and recovery. Ecotoxicol Environ Saf 40:49–55

    Article  CAS  PubMed  Google Scholar 

  • Klinger MM, MacCarter GD, Boozer CN (1996) Body weight and composition in the Sprague-Dawley rat: comparison of three outbred sources. Lab Anim Sci 46:67–69

    CAS  PubMed  Google Scholar 

  • Klontz GW and Smith LS (1968) Methods of using fish in biological research subject In: Methods of animal experimentation III. Ed. Coy.W.L. p 323–385

  • Laiz-Carrión R, Sangiao-Alvarellos S, Guzmán JM, Del Río MPM, Míguez JM, Soengas JL, Mancera JM (2002) Energy me- tabolism in fish tissues related to osmoregulation and cortisol action. Fish Physiol Biochem 27(3):179–188

    Article  Google Scholar 

  • Lindesjoo E, Thulin J (1994) Histopathology of skin and gills of fish in pulp mill effluents. Disease Aquacult Organism 18:81–93

    Article  Google Scholar 

  • Mandal SC, Kadir S, Hossain A (2020) Effects of salinity on the growth, survival and proximate composition of pangas. Pangasius Hypophthalmus Bangladesh J Zool 48(1):141–149

    Article  Google Scholar 

  • Maugars G, Manirafasha MC, Grousset E, Boulo V, Lignot JH (2018) The effects of acute transfer to freshwater on ion transporters of the pharyngeal cavity in European seabass (Dicentrarchus labrax). Fish Physiol Biochem 44:1393–1408

    Article  CAS  PubMed  Google Scholar 

  • Moorman BP, Lerner DT, Grau EG, Seale AP (2015) The effects of acute salinity challenges on osmoregulation in Mozambique tilapia reared in a tidally changing salinity. J Exp Biol 218(5):731–739

    Article  PubMed  Google Scholar 

  • Moyle PB, Cech JJ Jr (1996) Fishes: an introduction to ichthyology. 3rd ed. Upper Saddle River, Prentice Hall. Upper Saddle River, NJ. pp 590

  • Musa SO, Tiamiyu LO, Solomon SG, Ayuba VO, Okomoda VT (2018) Nutritional value of hydrothermally processed Jatropha curcas kernel and its effect on growth and hematological parameters of Clarias gariepinus (Burchell, 1822). Aquaculture Reports 10:32–38

    Article  Google Scholar 

  • Myers MS, Fournie JW (2002) Histopathological biomarkers as integrators of anthropogenic and environmental stressors In: Biological indicators of aquatic ecosystem stress. Am Fisheries Soc 24:221–287

    Google Scholar 

  • Nabilah AM (2013) The effect of salinity exposure on the gene expression in the Pangasius nasutus (Bleeker, 1863) muscle (Doctoral dissertation. Universiti Malaysia Terengganu), Terengganu, p 138

    Google Scholar 

  • Nguyen THP (2015) Effects of temperature and salinity on growth performance in cultured tra catfish (Pangasianodon hypophthalmus) in Vietnam (Doctoral dissertation, Queensland University of Technology), pp 131

  • Noga JE (2010) Fish disease: diagnosis and treatment. Wiley and Sons, pp 536

  • Nogueira G, Stigter T, Zhou Y, Mussa F, Juizo D (2019) Understanding groundwater salinization mechanisms to secure freshwater resources in the water-scarce city of Maputo, Mozambique. Sci Total Environ 661:723–736

    Article  CAS  PubMed  Google Scholar 

  • Norman JR (1963) History of Fishes, 2 ha, Geenwood PH (Ed) pp 432

  • Nte M, Hart A, Edun O, Akinrotimi O (2011) Alterations in enzymes activities as a biomarker in black jaw tilapia (Sarotherodon melanotheron) exposed to industrial effluents. Cont J Biol Sci 4(2):37–44

    Google Scholar 

  • Nwani CD, Mkpadobi BN, Onyishi G, Echi PC, Chukwuka CO, Oluah SN, Ivoke N (2014) Changes in behavior and hematological parameters of freshwater African catfish Clarias gariepinus (Burchell 1822) following sublethal exposure to chloramphenicol. Drug Chem Toxicol 37(1):107–113

    Article  CAS  PubMed  Google Scholar 

  • Ogueji EO, Iheanacho SC, Nwani CD, Mbah CE, Okeke OC, Ibrahim B (2017) Toxicity of diazepam on lipid peroxidation, biochemical and oxidative stress indicators on liver and gill tissues of African catfish Clarias gariepinus (Burchell, 1822). Int J Fisheries Aquat Stud 5(3):114–123

    Google Scholar 

  • Ogunji J, Iheanacho S (2021) Alternative protein source: acceptability of cow blood meal in place of fish meal assessed via growth, antioxidant enzymes functions and haematological response in Clarias gariepinus (Burchell, 1822). Aquac Res 52(6):2651–2661

    Article  CAS  Google Scholar 

  • Okomoda VT (2018) Hybridization between Pangasianodon hypophthalmus (Sauvage, 1878) and Clarias gariepinus (Burchell, 1822). Doctor of Philosophy in Fisheries, Universiti Malaysia Terengganu, Malaysia, pp 317

  • Okomoda VT, Ataguba GA, Ayuba VO (2013) Hematological response of Clarias gariepinus fingerlings exposed to acute concentrations of Sunsate®. J Stress Physiol Biochem 9(2):271–278

    Google Scholar 

  • Okomoda VT, Koh ICC, Shahreza MS (2017) First report on the successful hybridization of Pangasianodon hypophthalmus (Sauvage, 1878) and Clarias gariepinus (Burchell, 1822). Zygote 25(4):443–452

    Article  CAS  PubMed  Google Scholar 

  • Okomoda VT, Koh ICC, Hassan A, Amornsakun T, Shahreza MS (2018) Haematological parameters of pure and reciprocal crosses of Pangasianodon hypophthalmus (Sauvage, 1878) and Clarias gariepinus (Burchell, 1822). Comp Clin Pathol 27:549–554

    Article  CAS  Google Scholar 

  • Okomoda VT, Koh ICC, Hassan A, Amornsakun T, Shahreza MS (2019) Water quality tolerance and gill morphohistology of pure and reciprocal crosses of Pangasianodon hypophthalmus and Clarias gariepinus. J King Saud University Sci 31(4):713–723

    Article  Google Scholar 

  • Okomoda VT, Musa SO, Tiamiyu LO, Solomon SG, Adeyemo BT, Alamanjo CC, Abol-Munafi AB (2022) Nutritional profile of toasted Jatropha curcas seed and its dietary implications on zootechnical and blood parameters of Clarias gariepinus. Comp Clin Pathol 31:81–90

    Article  Google Scholar 

  • Olufeagba SO, Okomoda VT, Shaibu G (2016) Embryogenesis and early growth of pure strains and hybrids between Clarias gariepinus (Burchell, 1822) and Heterobranchus longifilis Valenciennes, 1840. N Am J Aquac 78(4):346–355

    Article  Google Scholar 

  • Patriche T, Patriche N, Tenciu M (2009) Cyprinids total blood proteins determination. Scientific Papers Animal Sci Biotechnol 42(2):95–101

    Google Scholar 

  • Pavlosky KK, Yamaguchi Y, Lerner DT, Seale AP (2019) The effects of transfer from steady state to tidally changing salinities on plasma and branchial osmoregulatory variables in adult Mozambique tilapia. Comp Biochem Physiol a: Mol Integr Physiol 227:134–145

    Article  CAS  PubMed  Google Scholar 

  • Randall DJ, Perry SF, Heming TA (1982) Gas transfer and acid base regulation in Salmonids. Comparative Biochem Physiol 73B:93–103

    Google Scholar 

  • Reece JB, Meyers N, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB, Cooke BN (2014) Animal Form and Function Campbell Biol 10:1090–1103

    Google Scholar 

  • Sarma K, Prabakaran K, Krishnan P, Grinson G, Kumar AA (2013) Response of a freshwater air breathing fish, Clarias batrachus to salinity stress: an experimental case for their farming in brackish water areas in Andaman. India Aquac Int 21(1):183–196

    Article  CAS  Google Scholar 

  • Scott AL, Rogers WA (1980) Histological effects of prolonged sublethal hypoxia on channel catfish Ictalurus punctatus (Rafinesque). J Fish Dis 3:305–316

    Article  Google Scholar 

  • Solomon SG, Okomoda VT (2012) Effects of photoperiod on the haematological parameters of Clarias gariepinus fingerlings reared in water re-circulatory system. J Stress Physiol Biochem 8:247–253

    Google Scholar 

  • Solomon SG, Ugonna BO, Olufeagba SO, Okomoda VT (2017) Haematology and gonad histology of Oreochromis niloticus (Linnaeus, 1758) fed Carica papaya seed meal. Brazilian J Aquatic Sci Technol 21(1):8–15

    Article  Google Scholar 

  • Strzyzewska E, Szarek J, Babinska I (2016) Morphologic evaluation of the gills as a tool in the diagnostics of pathological conditions in fish and pollution in the aquatic environment: a review. Vet Med 61(3):123–132

    Article  Google Scholar 

  • Sucré E, Bossus M, Bodinier C, Boulo V, Charmantier G, Charmantier-Daures M, Cucchi P (2013) Osmoregulatory response to low salinities in the European sea bass embryos: a multi-site approach. J Comp Physiol B 183:83–97

    Article  PubMed  Google Scholar 

  • Sule OD, Adikwu I (2004) Embryonic development in Clarias gariepinus (Buchell, 1822) under laboratory conditions. Animal Res Int 1:2

    Google Scholar 

  • Takashima F, Hibiya T (1995) An atlas of fish histology. Normal and pathological features. Gustav Fischer Verlag, Kodansha, Tokyo, p 192

    Google Scholar 

  • Tkatcheva V, Hyvarinen H, Kukkonen J, Ryzhkov LP, Holopainen IJ (2004) Toxic effects of mining effluents on fish gills in a subarctic lake system in NW Russia. Ecotoxicol Environ Saf 57:278–289

    Article  CAS  PubMed  Google Scholar 

  • Varsamos S, Nebel C, Charmantier G (2005) Ontogeny of osmoregulation in postembryonic fish: a review. Comp Biochem Physiol a: Mol Integr Physiol 141(4):401–429

    Article  PubMed  Google Scholar 

  • Vieira CAS, Vieira JS, Bastos MS, Zancanela V, Barbosa LT, Gasparino E, Del Vesco AP (2018) Expression of genes related to antioxidant activity in Nile tilapia kept under salinity stress and fed diets containing different levels of vitamin C. J Toxicol Environ Health A 81(1–3):20–30

    Article  PubMed  Google Scholar 

  • Viviana L, Indianara FB, Luís AS, Adalto B (2015) Effect of salinity on survival, growth and biochemical parameters in juvenile Lebranch mullet (Perciformes: Mugilidae). Neotropical Ichthyology 13(2):447–452

    Article  Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77(3):591–625

    Article  CAS  PubMed  Google Scholar 

  • Wiegertjes GF, Stet RJM, Parmentier HK, Van Muiswinkel WB (1996) Immunogenetics of disease resistance in fish; a comparable approach. Dev Comp Immunol 20:365–381

    Article  CAS  PubMed  Google Scholar 

  • Williams WD (2001) Anthropogenic salinisation of inland waters. In Saline Lakes: Publications from the 7th International Conference on Salt Lakes, held in Death Valley National Park, California, USA, September 1999 (pp. 329–337). Springer Netherlands

  • Winkaler EU, Silva AG, Galindo HC, Martinez CBR (2001) Biomarcadores histológicos e fisiológicos para o monitoramento da saúde de peixes de ribeirões de Londrina. Estado Do Paraná Acta Scientiarun 23(2):507–514

    Google Scholar 

  • Zidan EM, Goma AA, Tohamy HG, Soliman MM, Shukry M (2022) Insight study on the impact of different salinity levels on behavioural responses, biochemical stress parameters and growth performance of African catfish (Clarias gariepinus). Aquac Res 53(7):2750–2759

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would love to profoundly thank the staff of the hatchery of the Department of Fisheries and Aquaculture, the Federal University of Agriculture Makurdi Nigeria. We also extend our gratitude to the anonymous reviewers who helped finetune this research work for publication in this journal.

Author information

Authors and Affiliations

Authors

Contributions

SGS, MI, and VTO conceptualized and designed the study, SI experimented, and collected needed data. Meanwhile, VTO wrote the draft of the manuscript. All authors reviewed the manuscript and approved it for submission.

Corresponding authors

Correspondence to Victor Tosin Okomoda or Mhd Ikhwanuddin.

Ethics declarations

Ethics approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed by the authors as approved by the Joseph Sarwuan Tarka University Ethics Committee on life science research.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okomoda, V.T., Isah, S., Solomon, S.G. et al. Salinity tolerance in Clarias gariepinus (Burchell, 1822): insight on blood parameter variations and gill histological changes. Fish Physiol Biochem 50, 605–616 (2024). https://doi.org/10.1007/s10695-023-01293-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-023-01293-3

Keywords

Navigation