Skip to main content
Log in

Hematological parameters of pure and reciprocal crosses of Pangasianodon hypophthalmus (Sauvage, 1878) and Clarias gariepinus (Burchell, 1822)

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Comparative study on the hematological parameters of pure and reciprocal crosses of the African and Asian catfish was done to establish a reference range for fingerlings of the novel fish. Blood was collected from Clarias gariepinus (CG), Pangasianodon hypophthalmus (PH), Pangapinus (♀PH × ♂CG), and the two observed morphotypes (Clarias-like and Panga-like) of Clariothalmus (♀CG × ♂PH) obtained from similar breeding history. Result obtained revealed that red blood cell counts and white blood cell counts were significantly lower in Panga-like Clariothalmus (1.08 × 106/mm3 and 6.99 × 103/mm3, respectively) compare to other groups with similar higher counts (between 2.09 × 106/mm3 and 2.65 × 106/mm3; 13.60 × 103/mm3 and 17.27 × 103/mm3, respectively). However, Pangapinus and pure P. hypophthalmus had significantly higher values of packed cell volume (33.10 and 32.50%, respectively) and hemoglobin content (12.63 and 11.72 g/dL, respectively); similar values were recorded in those fish with Clarias maternal origin (between 25.00–27.80% and 6.67–8.03 g/dL, respectively for PCV and Hb). Calculated values for mean corpuscular volume was higher in Panga-like Clariothalmus (198.8 fL and 80.26 pg, respectively) while mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration values were higher in the Pangapinus and pure P. hypophthalmus (between 48.10–56.98 pg and 38.28–35.96 g/dL, respectively). This result obtained is suggestive that the Panga-like Clariothalmus may have reduced fitness as compared to the other progenies. The baseline values established in this study could serve as a standard for physiological, pathological, and toxicological references in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adeyemo OK, Agbede SA, Olaniyan A, Shoaga OA (2003) The haematological response of Clarias gariepinus to changes in acclimation temperature. Afr J Biomed Res 6:105–108

    Google Scholar 

  • Adeyemo OK, Ajani F, Adedeji OB, Ajiboye OO (2008) Acute toxicity and blood profile of adult Clarias gariepinus exposed to lead nitrate. Internet J Haematol 4(2). Available online at https://print.ispub.com/api/0/ispub-article/7353

  • Adeyemo BT, Obande RA, Solomon SG (2014) Haematological reference ranges of cultured Clarias gariepinus in the Lower Benue River Basin, Nigeria. Comp Clin Pathol 23(2):361–366. https://doi.org/10.1007/s00580-012-1624-1

    Article  Google Scholar 

  • Angelica D, Criteavsiulia G, Andlorera D (2010) Haematological response of the European catfish, (Silurus glanis) reared at different densities in flow through production systems. Archiva Zootechnica 13(2):63–70

    Google Scholar 

  • Barros MM, Lim C, Klesius PH (2002) Effect of iron supplementation to cotton seed meal diets on growth performance of channel catfish, Ictalurus punctatus. J Appl Aquac 10(65):86–92

    Google Scholar 

  • Barton BA (2000) Salmonid fishes differ in their cortisol and glucose responses to handling and transport stress. N Am J Aquac 62:218

    Article  Google Scholar 

  • Blaxhall PC, Daisley KW (1973) Routine haematological methods for use with fish blood. Fish Biol 5(6):771–781. https://doi.org/10.1111/j.1095-8649.1973.tb04510.x

    Article  Google Scholar 

  • Campbell TW (2004) Hematology of lower vertebrates. In: Proceedings of the 55th Annual Meeting of the American College of Veterinary Pathologists Pathologists (ACVPC) & 39th Annual Meeting of the American Society of Clinical Pathology (ASVCP). ACVP and ASVCP, USA

  • Campbell TW, Murru F (1990) An introduction to fish hematology. Compendium Contin Educ Vet Sci 12:525–533

    Google Scholar 

  • Carter GS (1957) Air-breathing. In: Brown ME (ed) The physiology of fishes, vol I. Academic Press, London, pp 65–79. https://doi.org/10.1016/B978-1-4832-2817-4.50007-X

    Chapter  Google Scholar 

  • Drabkin DR (1945) Crystallographic and optical properties of human hemoglobin: a proposal for the standardization of hemoglobin. Am J Med Sci 209:268–270

    CAS  Google Scholar 

  • Dubale MS (1951) A comparative study of the extent of gill-surface in some representative Indian fishes and its bearing on the origin of the air-breathing habit. J Univ Bombay 19:90–101

    Google Scholar 

  • Ezeri GNO (2001) Haematological response of Clarias gariepinus to bacteria infection and prophylactic treatment with antibiotic. J Aquat Sci 16:22–24

    Google Scholar 

  • Fernandes MN, Mazon AF (2003) Environmental pollution and fish gill morphology. In: Val AL, Kapoor BG (eds) Fish adaptations. Science Publication, Enfield, pp 203–231

    Google Scholar 

  • Gabriel UU, Ezeri GNO, Opabunmi OO (2004) Influence of sex, source, health status and acclimation on the haematology of Clarias gariepinus (Burch, 1822). Afr J Biotechnol 3(9):463–467. https://doi.org/10.5897/AJB2004.000-2090

    Article  Google Scholar 

  • Galis F, Barel CPN (1980) Comparative functional morphology of the gills of African lacustrine cichlidae (Pisces, Teleostei). An eco-morphological approach. Neth J Zool 30:392–430

    Article  Google Scholar 

  • Gbore FA, Oginni O, Adewole AM, Aladenton JO (2006) The effect of transportation and handling stress on haematology and plasma biochemistry in fingerlings of Clarias gariepinus and Tilapia zilli. World J Agric Sci 2:208212

    Google Scholar 

  • Golovina NA (1996) Morphofunctional characteristics of the blood of fish as objects of aquiculture. Doctoral Thesis. Moscow, p 53

  • Groff JM, Zinkl JG (1999) Hematology and clinical chemistry of cyprinid fish. Common carp and goldfish. Vet Clin N Am Exot Anim Pract 2(3):741–746. https://doi.org/10.1016/S1094-9194(17)30120-2

    Article  CAS  Google Scholar 

  • Hesser EF (1960) Methods for routine on fish haematology. Prog Fish Cult 22(4):164–171. https://doi.org/10.1577/1548-8659(1960)22[164:MFRFH]2.0.CO;2

    Article  Google Scholar 

  • Hrubec TC, Smith SA, Robertson JL (2001) Age related in haematology and chemistry values of hybrid striped bass chrysops Morone saxatilis. Vet Clin Pathol 30(1):8–15

    Article  PubMed  Google Scholar 

  • Hughes GM, Morgan M (1973) The structure of fish gills in relation to their respiratory function. Biol Rev 48(3):419–475. https://doi.org/10.1111/j.1469-185X.1973.tb01009.x

    Article  Google Scholar 

  • Klinger MM, MacCarter GD, Boozer CN (1996) Body weight and composition in the Sprague-Dawley rat: comparison of three outbred sources. Lab Anim Sci 46:67–69

    CAS  PubMed  Google Scholar 

  • KoriSiakpere O, Ubogu EO (2008) Sublethal haematological effects of zinc on the freshwater fish, Heteroclarias sp. (Osteichthyes: Clariidae). Afr J Biotechnol 7(12):2068–2073. https://doi.org/10.5897/AJB07.706

    Article  CAS  Google Scholar 

  • Kori-Siakpere O, Ake JEG, Idoge E (2005) Haematological characteristics of the African snakehead, Parachacnna obscura. Afr J Biotechnol 4(6):527–530

    CAS  Google Scholar 

  • Luskova V (1997) Annual cycles and normal values of haematological parameters in fishes. Acta Sci Nat Brno 31(5):70

    Google Scholar 

  • Mmereole FUC (2009) Effects of age and breeds on the haematological parameters of broilers. Nat Appl Sci J 10(1):90–95

    Google Scholar 

  • Moron SE, Fernandes MN (1996) Pavement cell ultrastructural differences on Hoplias malabaricus, gill epithelia. J Fish Biol 49(2):357–362

    Google Scholar 

  • MyDr (2006) Full blood count (FBC). myDr Health Information. CMPMedica Australia. http://www.mydr.com.au/testsinvestigations/fullbloodcountfbc

  • Noga JE (2010) Fish disease: diagnosis and treatment. Wiley, 2010 536 pages

  • Norousta R, Mousavi-Sabet H (2013) Comparative characterization of blood cells and haematological parameters between the mature and immature Caspian Vimba, Vimba vimba persa (Teleostei, Cyprinidae). AACL Bioflux 6(3):232–240

    Google Scholar 

  • O’Neal CC, Weirich CR (2001) Effects of low level salinity on production and haematological parameters of channel catfish (Ictalurus punctatus) reared in multi-crop ponds. In: Book of abstract. Aquaculture 2001. International Triennial Conference of World Aquaculture Society. Jan. 21–25, 2001. Disney Coronado Springs Resort Lake Buena Vista, Florida, p 484

  • Ochang SN, Fagbenro OA, Adebayo OT (2007) Growth performance, body composition, haematology and product quality of the African catfish (Clarias gariepinus) fed diets with palm oil. Pak J Nutr 6:452459

    Google Scholar 

  • Ogunji JO, Uwuadiegwu N, Osuigwe D, Manfre W (2005) Effects of different processing methods on pigeon pae (Cajanus cajan) on the haematology of African catfish (C. gariepinus) larva. Proceedings of the International Conference on Agricultural Research for Development, April 1315, 2005, Canada, pp 1112

  • Okomoda VT, Ataguba GA, Ayuba VO (2013) Hematological response of Clarias gariepinus fingerlings exposed to acute concentrations of Sunsate®. J Stress Physiol Biochem 9(2):271–278

    Google Scholar 

  • Okomoda VT, Koh ICC, Shahreza MS (2017a) First report on the successful hybridization of Pangasianodon hypophthalmus (Sauvage, 1878) and Clarias gariepinus (Burchell, 1822). Zygote 25 (3). Available online at https://www.cambridge.org/core/services/aop-cambridge-core/content/view/6B5477FB455B513E854569531D11CE9E/S0967199417000259a.pdf/first_report_on_the_successful_hybridization_of_pangasianodon_hypophthalmus_sauvage_1878_and_clarias_gariepinus_burchell_1822.pdf

  • Okomoda VT, Koh ICC, Hassan A, Amornsakun T, Shahreza MS (2017b) Embryonic and larvae development of reciprocal crosses between Pangasianodon hypophthalmus (Sauvage, 1878) and Clarias gariepinus (Burchell, 1822). Accepted in press Egypt J Aquat Res

  • Omitoyin BO (2007) Plasma biochemical changes in Clarias gariepinus (Burchell, 1822) fed poultry litter. Asian J Anim Sci 1:4852

    Article  Google Scholar 

  • Orun I, Erdemli AU (2002) A study on blood parameters of Capoeta trutta (Heckel, 1843). J Biol Sci 2(8):508–511

    Article  Google Scholar 

  • Orun I, Dorucu M, Yazlak H (2003) Haematological parameters of three cyprinid fish species from Karakaya dam lake. Turk J Biol Sci 3:320–328

    Article  Google Scholar 

  • Rainza-Paiva MJT, Ishikawa CM, Das-Eiras AA, Felizardo NN (2000) Haemotological analysis of ‘chara’ Pseudoplatystoma fasciatum in captivity. Aqua 2000. Responsible aquaculture in the new millennium. Nice, France. May 2–6 2000. Eur Aquac Soc Spec Publ 28:590

    Google Scholar 

  • Rey Vazquez G, Guerrero GA (2007) Characterization of blood cells and hematological parameters in Cichlasoma dimerus (Teleostei, Perciformes). Tissue Cell 39:151–160

    Article  CAS  PubMed  Google Scholar 

  • Ruane NM, Nolan DT, Rotllant J, Costelloe J, Wendelaar Bonga SE (2000) Experimental exposure of rainbow trout Oncorhynchus mykiss (Walbaum) to the infective stages of the sea louse Lepeophtheirus salmonis (Kroyer) influences the physiological response to an acute stressor. Fish Shellfish Immunol 10(5):451–463. https://doi.org/10.1006/fsim.1999.0260

    Article  CAS  PubMed  Google Scholar 

  • Sabiri DM, El-Danasoury MAEH, Eissa IAE-M, Khouraiba HM (2009) Impact of heneguyosis infestation on haematological parameters of catfish (Clarias gariepinus). Int J Agric Biol 11:228–230

    Google Scholar 

  • Schottle E (1931) Morphologie und Physiologie der Atmung bei wasser-, schlamm- und landlebenden Gobiiformes. Z Wiss Zool 140:1–113

    Google Scholar 

  • Shah SL, Altindag A (2004) Haematological parameters of tench. (Tinca tinca) after acute and chronic exposure to lethal and sublethal mercury treatments. Bull Environ Contam Toxicol 73:911–918

    Article  CAS  PubMed  Google Scholar 

  • Sirimanapong W, Thompson KD, Kledmanee K, Thaijongrak P, Collet B, Ooi EL, Adams A (2014) Optimisation and standardisation of functional immune assays for striped catfish (Pangasianodon hypophthalmus) to compare their immune response to live and heat killed Aeromonas hydrophila as models of infection and vaccination

  • Solomon SG, Okomoda VT (2012) Effects of photoperiod on the haematological parameters of Clarias gariepinus fingerlings reared in water re-circulatory system. J Stress Physiol Biochem, ISSN 1997-0838 8:247–253

    Google Scholar 

  • Sunmonu TO, Oloyede BO (2008) Haematological response of African catfish (Clarias gariepinus) and rat to crude oil exposure. Int J Haematol 4(1). Available online at https://print.ispub.com/api/0/ispub-article/12421

  • Wagner EJ, Jensen T, Arndt R, Routedge MD, Brddwisch Q (1997) Effects of rearing density upon cut throat trout haematology, hatchery performance, fin erosion and general health and condition. Prog Fish Cult 59(3):173–187. https://doi.org/10.1577/1548-8640(1997)059<0173:EORDUC>2.3.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the School of Fisheries and Aquaculture Science, Universiti Malaysia Terengganu, Malaysia for providing P. hypophthalmus broodstock used in this study. We also acknowledge the help of all technical staffs of the PPSPA hatchery department during the breeding trial of this study. This study is part of the first author’s Ph. D research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Shahreza.

Ethics declarations

All applicable guidelines for the care and use of animals were followed for this study (which includes international, national, and/or institutional guidelines).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okomoda, V.T., Koh, I.C.C., Hassan, A. et al. Hematological parameters of pure and reciprocal crosses of Pangasianodon hypophthalmus (Sauvage, 1878) and Clarias gariepinus (Burchell, 1822). Comp Clin Pathol 27, 549–554 (2018). https://doi.org/10.1007/s00580-017-2623-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-017-2623-z

Keywords

Navigation