Skip to main content
Log in

Understanding zebrafish sleep and wakefulness physiology as an experimental model for biomedical research

  • Review
  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Sleep is a globally observable fact, or period of reversible distracted rest, that can be distinguished from arousal by various behavioral criteria. Although the function of sleep is an evolutionarily conserved behavior, its mechanism is not yet clear. The zebrafish (Danio rerio) has become a valuable model for neurobehavioral studies such as studying learning, memory, anxiety, and depression. It is characterized by a sleep-like state and circadian rhythm, making it comparable to mammals. Zebrafish are a good model for behavioral studies because they share genetic similarities with humans. A number of neurotransmitters are involved in sleep and wakefulness. There is a binding between melatonin and the hypocretin system present in zebrafish. The full understanding of sleep and wakefulness physiology in zebrafish is still unclear among researchers. Therefore, to make a clear understanding of the sleep/wake cycle in zebrafish, this article covers the mechanism involved behind it, and the role of the neuromodulator system followed by the mechanism of the HPA axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable for this submission.

References

  • Agrawal S, Singh V, Singh C, Singh A (2022) A review on pathophysiological aspects of Sleep Deprivation. CNS Neurol Disord Drug Targets. https://doi.org/10.2174/1871527321666220512092718

  • Aime M, Adamantidis AR (n.d.) The thalamus and sleep. In: the BOOK The Thalamus, Cambridge University Press

  • Almeida GZ (2022) Stress-regulating pathways interact with sleep-regulating pathways under sleep deprived conditions. PhD Thesis,. Florida Atlantic University

    Google Scholar 

  • Altenhofen S, Bonan CD (2022) Zebrafish as a tool in the study of sleep and memory-related disorders. Curr Neuropharmacol 20:540–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aranda-Martínez P et al (2022) The zebrafish, an outstanding model for biomedical research in the field of melatonin and human diseases. Int J Mol Sci 23:7438

    Article  PubMed  PubMed Central  Google Scholar 

  • Azeez IA et al (2021) An overview of the orexinergic system in different animal species. Metab Brain Dis 36:1419–1444

    Article  CAS  PubMed  Google Scholar 

  • Bao W-W et al (2023) Understanding the neural mechanisms of general anesthesia from interaction with sleep–wake state: a decade of discovery. Pharmacol Rev 75:532–553

    Article  CAS  PubMed  Google Scholar 

  • Barrios JP et al (2020) Hypothalamic dopamine neurons control sensorimotor behavior by modulating brainstem premotor nuclei in zebrafish. Curr Biol 30:4606–4618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein DL et al (2018) Hypocretin receptor 1 knockdown in the ventral tegmental area attenuates mesolimbic dopamine signaling and reduces motivation for cocaine. Addict Biol 23:1032–1045

    Article  CAS  PubMed  Google Scholar 

  • Blows WT (2021) The biological basis of mental health. Routledge

    Book  Google Scholar 

  • Boutrel B, Koob GF (2004) What keeps us awake: the neuropharmacology of stimulants and wakefulness promoting medications. Sleep 27:1181–1194

    Article  PubMed  Google Scholar 

  • Boykin JC (2016) The behavioral, biochemical and genetic effects of sleep deprivation in zebrafish (Danio Rerio). Electronic Theses and Dissertations, pp 1479

  • Bringmann H (2019) Genetic sleep deprivation: using sleep mutants to study sleep functions. EMBO Rep 20:e46807

    Article  PubMed  PubMed Central  Google Scholar 

  • Carli G, Farabollini F (2022) Neuromediators and defensive responses including tonic immobility (TI): brain areas and circuits involved. Defence from Invertebrates to Mammals: Focus on Tonic Immobility 271:167

    Article  Google Scholar 

  • Cassar S et al (2019) Use of zebrafish in drug discovery toxicology. Chem Res Toxicol 33:95–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Ch’ng S et al (2018) The intersection of stress and reward: BNST modulation of aversive and appetitive states. Prog Neuro-Psychopharmacol Biol Psychiatry 87:108–125

    Article  Google Scholar 

  • Chu B et al (2021) Physiology, stress reaction. In: StatPearls [Internet]. StatPearls Publishing

    Google Scholar 

  • Collier AD et al (2022) Embryonic ethanol exposure induces ectopic Hcrt and MCH neurons outside hypothalamus in rats and zebrafish: role in ethanol-induced behavioural disturbances. Addict Biol 27:e13238

    Article  CAS  PubMed  Google Scholar 

  • Cully M (2019) Zebrafish earn their drug discovery stripes. Nat Rev Drug Discov 18(11):811–813. https://doi.org/10.1038/d41573-019-00165-x

  • Daskalakis NP, Meijer OC, de Kloet ER (2022) Mineralocorticoid receptor and glucocorticoid receptor work alone and together in cell-type-specific manner: Implications for resilience prediction and targeted therapy. Neurobiol Stress 18:100455. https://doi.org/10.1016/j.ynstr.2022.100455

  • Dopp J, Ortega A, Davie K, Poovathingal S, Baz ES, Liu S (2023) Single-cell transcriptomics reveals that glial cells integrate homeostatic and circadian processes to drive sleep-wake cycles. bioRxiv, pp 1-45

  • Duhart JM et al (2023) Many faces of sleep regulation: beyond the time of day and prior wake time. FEBS J 290:931–950

    Article  CAS  PubMed  Google Scholar 

  • Eban-Rothschild A et al (2018) Neuronal mechanisms for sleep/wake regulation and modulatory drive. Neuropsychopharmacology 43:937–952

    Article  PubMed  PubMed Central  Google Scholar 

  • Echevarria DJ, Khan KM (2017) Rest in the zebrafish. Int J Comp Psychol 30:32831. https://doi.org/10.46867/ijcp.2017.30.00.15

  • Erickson E (2020) Investigating the role of Phox2B-expressing glutamatergic parafacial zone neurons in sleep wake control GSBS dissertations and theses. https://doi.org/10.13028/tsyw-vr44

  • Gaidin SG et al (2020) Activation of alpha-2 adrenergic receptors stimulates GABA release by astrocytes. Glia 68:1114–1130

    Article  PubMed  Google Scholar 

  • Ghareghani M et al (2023) Melatonin and vitamin D, two sides of the same coin, better to land on its edge to improve multiple sclerosis. Proc Natl Acad Sci 120:e2219334120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gjerstad JK et al (2018) Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress 21:403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grafe LA, Bhatnagar S (2020) The contribution of orexins to sex differences in the stress response. Brain Res 1731:145893

    Article  CAS  PubMed  Google Scholar 

  • Griffin J (1996) The origin of dreams: A psychobiological approach. MPhil thesis, London School of Economics and Political Science

  • Herman JP et al (2020) Brain mechanisms of HPA axis regulation: neurocircuitry and feedback in context Richard Kvetnansky lecture. Stress 23:617–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Pérez OR et al (2019) A synaptically connected hypothalamic magnocellular vasopressin-locus coeruleus neuronal circuit and its plasticity in response to emotional and physiological stress. Front Neurosci 13:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Holst SC, Landolt HP (2018) Sleep-wake neurochemistry. Sleep Med Clin 13(2):137–146. https://doi.org/10.1016/j.jsmc.2018.03.002

  • Isa T, Marquez-Legorreta E, Grillner S, Scott EK (2021) The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr Biol 31(11):741–762. https://doi.org/10.1016/j.cub.2021.04.001

  • Jha VM, Jha SK (2020) Sleep: evolution and functions. Springer

    Book  Google Scholar 

  • Jiang Y et al (2022) Prednisolone induces sleep disorders via inhibition of melatonin secretion by the circadian rhythm in zebrafish. Biomed Pharmacother 147:112590

    Article  CAS  PubMed  Google Scholar 

  • Jones BE (2020) Arousal and sleep circuits. Neuropsychopharmacology 45:6–20

    Article  CAS  PubMed  Google Scholar 

  • Kanathur N et al (2010) Circadian rhythm sleep disorders. Clin Chest Med 31:319–325

    Article  PubMed  Google Scholar 

  • Kaplan GB, Lakis GA, Zhoba H (2022) Sleep-wake and arousal dysfunctions in post-traumatic stress disorder: Role of orexin systems. Brain Res Bull 186:106–122. https://doi.org/10.1016/j.brainresbull.2022.05.006

  • Kawashima T (2018) The role of the serotonergic system in motor control. Neurosci Res 129:32–39

    Article  CAS  PubMed  Google Scholar 

  • Kelly ML (2020) An investigation into sleep in sharks: behavioural and electrophysiological approaches. Thesis The University of Western Australia

  • Kelly ML et al (2020) Evidence for sleep in sharks and rays: behavioural, physiological, and evolutionary considerations. Brain Behav Evol 94:37–50

    Article  Google Scholar 

  • Kesner AJ et al (2022) Seeking motivation and reward: roles of dopamine, hippocampus, and supramammillo-septal pathway. Prog Neurobiol 212:102252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharkovets T, Hardelin JP, Safieddine S, Schweizer M, El-Amraoui A, Petit C, Jentsch TJ (2000) KCNQ4, a K+ channel mutated in a form of dominant 102 deafness, is expressed in the inner ear and the central auditory pathway. PNAS 97:4333–4338

  • Kim DW et al (2022) Single-cell analysis of early chick hypothalamic development reveals that hypothalamic cells are induced from prethalamic-like progenitors. Cell Rep 38:110251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JS, Iremonger KJ (2019) Temporally tuned corticosteroid feedback regulation of the stress axis. Trends Endocrinol Metab 30:783–792

    Article  CAS  PubMed  Google Scholar 

  • Kornum BR, Mignot E (2023) Neurobioloy of sleep and circadian disorders. In: Neurobiology of Brain Disorders. Elsevier, pp 635–658

    Chapter  Google Scholar 

  • Kroll F (2022) From disease genes to behavioural screen in zebrafish: early onset Alzheimer’s as case study. PhD Thesis,. UCL (University College London)

    Google Scholar 

  • Latifi B et al (2018) Sleep-wake cycling and energy conservation: role of hypocretin and the lateral hypothalamus in dynamic state-dependent resource optimization. Front Neurol 9:790

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Bon O (2020) Relationships between REM and NREM in the NREM-REM sleep cycle: a review on competing concepts. Sleep Med 70:6–16

    Article  PubMed  Google Scholar 

  • Lendner JD et al (2020) An electrophysiological marker of arousal level in humans. Elife 9:e55092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung LC et al (2019) Neural signatures of sleep in zebrafish. Nature 571:198–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S-B, de Lecea L (2020) The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 167:107993

    Article  CAS  PubMed  Google Scholar 

  • Li Y-D et al (2021) Ventral pallidal GABAergic neurons control wakefulness associated with motivation through the ventral tegmental pathway. Mol Psychiatry 26:2912–2928

    Article  CAS  PubMed  Google Scholar 

  • Lightman SL et al (2020) Dynamics of ACTH and cortisol secretion and implications for disease. Endocr Rev 41:bnaa002

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin J-G et al (2018) Histamine H1 receptor antagonists facilitate electroacupuncture analgesia. Am J Chin Med 46:55–68

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Kim JY (2022) Mammalian circadian networks mediated by the suprachiasmatic nucleus. FEBS J 289:6589–6604

    Article  CAS  PubMed  Google Scholar 

  • Luppi P-H, Fort P (2019) Sleep–wake physiology. Handb Clin Neurol 160:359–370

    Article  PubMed  Google Scholar 

  • Luppi P-H et al (2019) Inhibitory mechanisms in the dorsal raphe nucleus and locus coeruleus during sleep. In: Handbook of behavioral state control. CRC Press, pp 195–211

    Chapter  Google Scholar 

  • Lyons DG, Rihel J (2020) Sleep circuits and physiology in non-mammalian systems. Curr Opin Physio 15:245–255

    Article  Google Scholar 

  • Mader EC Jr, Mader ACL (2016) Sleep as spatiotemporal integration of biological processes that evolved to periodically reinforce neurodynamic and metabolic homeostasis: The 2m3d paradigm of sleep. J Neurol Sci 367:63–80

    Article  PubMed  Google Scholar 

  • Malikowska-Racia N, Salat K (2019) Recent advances in the neurobiology of posttraumatic stress disorder: a review of possible mechanisms underlying an effective pharmacotherapy. Pharmacol Res 142:30–49

    Article  PubMed  Google Scholar 

  • Maroteaux L, Kilic F (2018) Frontiers of serotonin beyond the brain. Pharmacol Res 140:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Martire VL et al (2020) Stress & sleep: a relationship lasting a lifetime. Neurosci Biobehav Rev 117:65–77

    Article  PubMed  Google Scholar 

  • Mearns DS et al (2020) Deconstructing hunting behavior reveals a tightly coupled stimulus-response loop. Curr Biol 30:54–69

    Article  CAS  PubMed  Google Scholar 

  • Mehta R et al (2020) REM sleep loss–induced elevated noradrenaline could predispose an individual to psychosomatic disorders: a review focused on proposal for prediction, prevention, and personalized treatment. EPMA J 11:529–549

    Article  PubMed  PubMed Central  Google Scholar 

  • Mi P et al (2019) Melatonin protects embryonic development and maintains sleep/wake behaviors from the deleterious effects of fluorene-9-bisphenol in zebrafish (Danio rerio). J Pineal Res 66:e12530

    Article  PubMed  Google Scholar 

  • Mosser EA et al (2019) Identification of pathways that regulate circadian rhythms using a larval zebrafish small molecule screen. Sci Rep 9:1–14

    Article  CAS  Google Scholar 

  • Mu P, Huang YH (2019) Cholinergic system in sleep regulation of emotion and motivation. Pharmacol Res 143:113–118

    Article  CAS  PubMed  Google Scholar 

  • Müller TE et al (2020) Role of the serotonergic system in ethanol-induced aggression and anxiety: a pharmacological approach using the zebrafish model. Eur Neuropsychopharmacol 32:66–76

    Article  PubMed  Google Scholar 

  • Nevárez N, de Lecea L (2018) Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res. 7:1000–1421. https://doi.org/10.12688/f1000research.15097.1

  • Oesch LT, Adamantidis AR (2021) How REM sleep shapes hypothalamic computations for feeding behavior. Trends Neurosci 44:990–1003

    Article  CAS  PubMed  Google Scholar 

  • Oikonomou G et al (2019) The serotonergic raphe promote sleep in zebrafish and mice. Neuron 103:686–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osorio-Forero A (2022) An active locus coeruleus in sleep: towards a dynamic structure of NREM sleep. PhD Thesis, UNIL, pp 1–95

  • Paller KA et al (2021) Memory and sleep: how sleep cognition can change the waking mind for the better. Annu Rev Psychol 72:123–150

    Article  PubMed  Google Scholar 

  • Panula P et al (2021) The histamine system in zebrafish brain: organization, receptors, and behavioral roles. In: The functional roles of histamine receptors. Springer, pp 291–302

    Chapter  Google Scholar 

  • Patke A et al (2020) Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 21:67–84

    Article  CAS  PubMed  Google Scholar 

  • Pfaff D (2019) How brain arousal mechanisms work: paths toward consciousness. Cambridge University Press

    Google Scholar 

  • Pinheiro-da-Silva J et al (2018) Sleep deprivation impairs cognitive performance in zebrafish: a matter of fact? Behav Processes 157:656–663

    Article  PubMed  Google Scholar 

  • Ramachandran S, Rajagopal S (2019) Zebrafish: a model for marine peptide based drug screening. Springer

    Book  Google Scholar 

  • Rao R et al (2021) Modeling the influence of chronic sleep restriction on cortisol circadian rhythms, with implications for metabolic disorders. Metabolites 11:483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasch B, Born J (2013) About sleep's role in memory. Physiol Rev 93(2):681–766. https://doi.org/10.1152/physrev.00032.2012

  • Sanford L (2019) Characterization of intracellular Zn2+ dynamics and Zn2+-dependent gene expression in primary dissociated hippocampal neurons. Desserted Thesis, University of Colorado Boulder

  • Sharples L (2020) Disrupted-in-schizophrenia 1 (disc1) regulates development of the hypothalamus and its associated behaviours. PhD Thesis,. University of Sheffield

    Google Scholar 

  • Shine JM (2019) Neuromodulatory influences on integration and segregation in the brain. Trends Cogn Sci 23:572–583

    Article  PubMed  Google Scholar 

  • Simmons SJ (2018) Hypocretin/orexin and the ventral midbrain: topography and function associated with psychostimulant-taking and affect. Temple University

    Google Scholar 

  • Simor P et al (2020) The microstructure of REM sleep: why phasic and tonic? Sleep Med Rev 52:101305

    Article  PubMed  Google Scholar 

  • Singh R, Biswas DA, Biswas D (2023) Physiological role of orexin/hypocretin in the human body in motivated behavior: a comprehensive review. Cureus 15(1):e34009. https://doi.org/10.7759/cureus.34009

  • Smith SM, Vale WW (2022) The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci 8(4):383–395. https://doi.org/10.31887/DCNS.2006.8.4/ssmith

  • Stetler C et al (2004) Uncoupling of social zeitgebers and diurnal cortisol secretion in clinical depression. Psychoneuroendocrinology 29:1250–1259

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N et al (2020) Polygenic risk score analysis revealed shared genetic background in attention deficit hyperactivity disorder and narcolepsy. Transl Psychiatry 10:284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Téblick A et al (2022) Impact of hydrocortisone and of CRH infusion on the hypothalamus-pituitary-adrenocortical axis of septic male mice. Endocrinology 163:bqab222

    Article  PubMed  Google Scholar 

  • Tiligada E, Ennis M (2020) Histamine pharmacology: from Sir Henry Dale to the 21st century. Br J Pharmacol 177:469–489

    Article  CAS  PubMed  Google Scholar 

  • Top D, Young MW (2018) Coordination between differentially regulated circadian clocks generates rhythmic behavior. Cold Spring Harb Perspect Biol 10:a033589

    Article  PubMed  PubMed Central  Google Scholar 

  • Trang A, Khandhar PB (2021) Physiology, acetylcholinesterase. In: StatPearls [Internet]. StatPearls Publishing

    Google Scholar 

  • Van Drunen R, Eckel-Mahan K (2021) Circadian rhythms of the hypothalamus: from function to physiology. Clocks sleep 3:189–226

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Egroo M, Koshmanova E, Vandewalle G, Jacobs HI (2022) Importance of the locus coeruleusnorepinephrine system in sleep-wake regulation: Implications for aging and Alzheimer's disease. Sleep Med Rev 62:101592. https://doi.org/10.1016/j.smrv.2022.101592

  • Vargas I, Lopez-Duran N (2020) The cortisol awakening response after sleep deprivation: Is the cortisol awakening response a “response” to awakening or a circadian process? J Health Psychol 25:900–912

    Article  PubMed  Google Scholar 

  • Venner A et al (2019) Reassessing the role of histaminergic tuberomammillary neurons in arousal control. J Neurosci 39:8929–8939

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitkauskas M, Mathuru AS (2020) Total recall: lateral habenula and psychedelics in the study of depression and comorbid brain disorders. Int J Mol Sci 21:6525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • War R et al (2022) Zebrafish as an emerging alternative tool for studying anxiety disorders. J Adv Sci Res 13:13–20

    CAS  Google Scholar 

  • Wiggin TD (2015) The spinal locomotor circuit of the larval zebrafish: anatomical organization and functional components. PhD Thesis,. University of Minnesota

    Google Scholar 

  • Yoshikawa T et al (2021) Histaminergic neurons in the tuberomammillary nucleus as a control centre for wakefulness. Br J Pharmacol 178:750–769

    Article  CAS  PubMed  Google Scholar 

  • Yusan RT, Fadlilah SH (2023) Review sleep and sleep deprivation. Med Health J 2:148–169

    Article  Google Scholar 

  • Yutao BAI (2022) Towards a higher-throughput chemobehavioural phenomics using small model organisms. PhD Thesis,. RMIT University

    Google Scholar 

  • Zada D, Appelbaum L (2020) Behavioral criteria and techniques to define sleep in zebrafish. In: Behavioral and Neural Genetics of Zebrafish. Elsevier, pp 141–153

    Chapter  Google Scholar 

  • Zada D et al (2019) Sleep increases chromosome dynamics to enable reduction of accumulating DNA damage in single neurons. Nat Commun 10:895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerbi V et al (2019) Rapid reconfiguration of the functional connectome after chemogenetic locus coeruleus activation. Neuron 103:702–718

    Article  CAS  PubMed  Google Scholar 

  • Zhang X et al (2020) Inactivation of the ventral pallidum by GABA A receptor agonist promotes non-rapid eye movement sleep in rats. Neurochem Res 45:1791–1801

    Article  CAS  PubMed  Google Scholar 

  • Zhdanova IV (2006) Sleep in zebrafish. Zebrafish 3:215–226

    Article  CAS  PubMed  Google Scholar 

  • Zhdanova IV (2011) Sleep in zebrafish. Zebrafish 3(2):215–226. https://doi.org/10.1089/zeb.2006.3.215

  • Zheng X et al (2021) Environmental chemicals affect circadian rhythms: an underexplored effect influencing health and fitness in animals and humans. Environ Int 149:106159

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman JE et al (2008) Conservation of sleep: insights from non-mammalian model systems. Trends Neurosci 31:371–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zisapel N (2018) New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol 175:3190–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All authors acknowledge the Institute for support.

Funding

As provided by the Institute.

Author information

Authors and Affiliations

Authors

Contributions

Rima Singh and Deepali Sharma wrote the main manuscript text and prepared figures  Anoop Kumar and Charan Singh revise the manuscript.  Arti Singh design the layout and critically revise the manuscriptAll authors reviewed the manuscript.

Corresponding author

Correspondence to Arti Singh.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Sharma, D., Kumar, A. et al. Understanding zebrafish sleep and wakefulness physiology as an experimental model for biomedical research. Fish Physiol Biochem 50, 827–842 (2024). https://doi.org/10.1007/s10695-023-01288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-023-01288-0

Keywords

Navigation