Skip to main content

Advertisement

Log in

REM sleep loss–induced elevated noradrenaline could predispose an individual to psychosomatic disorders: a review focused on proposal for prediction, prevention, and personalized treatment

  • Review
  • Published:
EPMA Journal Aims and scope Submit manuscript

Abstract

Historically and traditionally, it is known that sleep helps in maintaining healthy living. Its duration varies not only among individuals but also in the same individual depending on circumstances, suggesting it is a dynamic and personalized physiological process. It has been divided into rapid eye movement sleep (REMS) and non-REMS (NREMS). The former is unique that adult humans spend the least time in this stage, when although one is physically asleep, the brain behaves as if awake, the dream state. As NREMS is a pre-requisite for appearance of REMS, the latter can be considered a predictive readout of sleep quality and health. It plays a protective role against oxidative, stressful, and psychopathological insults. Several modern lifestyle activities compromise quality and quantity of sleep (including REMS) affecting fundamental physiological and psychopathosomatic processes in a personalized manner. REMS loss–induced elevated brain noradrenaline (NA) causes many associated symptoms, which are ameliorated by preventing NA action. Therefore, we propose that awareness about personalized sleep hygiene (including REMS) and maintaining optimum brain NA level should be of paramount significance for leading physical and mental well-being as well as healthy living. As sleep is a dynamic, multifactorial, homeostatically regulated process, for healthy living, we recommend addressing and treating sleep dysfunctions in a personalized manner by the health professionals, caregivers, family, and other supporting members in the society. We also recommend that maintaining sleep profile, optimum level of NA, and/or prevention of elevation of NA or its action in the brain must be seriously considered for ameliorating lifestyle and REMS disturbance–associated dysfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACh:

acetylcholine

AD:

Alzheimer’s disease

GABA:

gamma-aminobutyric acid

IgA:

immunoglobulin-A

IgM:

immunoglobulin-M

LC:

locus coeruleus

NA:

noradrenaline

NK cells:

natural killer cells

NREMS:

non-rapid eye movement sleep

Orx:

orexin

PD:

Parkinson’s disease

PPPM:

predictive, preventive, and personalized medicine

REMS:

rapid eye movement sleep

RBD:

REMS behavior disorders

REMSD:

rapid eye movement sleep deprivation

References

  1. Reynolds CF. 3rd. Troubled sleep, troubled minds, and DSM-5. Arch Gen Psychiatry. 2011;68(10):990–1. https://doi.org/10.1001/archgenpsychiatry.2011.104.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Benington JH. Sleep homeostasis and the function of sleep. Sleep. 2000;23(7):959–66.

    Article  CAS  PubMed  Google Scholar 

  3. Mallick BN, Singh A. REM sleep loss increases brain excitability: role of noradrenaline and its mechanism of action. Sleep Med Rev. 2011;15(3):165–78. https://doi.org/10.1016/j.smrv.2010.11.001.

    Article  PubMed  Google Scholar 

  4. Bliwise DL. Sleep disorders in Alzheimer’s disease and other dementias. Clin Cornerstone. 2004;6(Suppl 1A):S16–28. https://doi.org/10.1016/s1098-3597(04)90014-2.

    Article  PubMed  Google Scholar 

  5. Pawlyk AC, Jha SK, Brennan FX, Morrison AR, Ross RJ. A rodent model of sleep disturbances in posttraumatic stress disorder: the role of context after fear conditioning. Biol Psychiatry. 2005;57(3):268–77. https://doi.org/10.1016/j.biopsych.2004.11.008.

    Article  PubMed  Google Scholar 

  6. Breslau N. Neurobiological research on sleep and stress hormones in epidemiological samples. Ann N Y Acad Sci. 2006;1071:221–30. https://doi.org/10.1196/annals.1364.017.

    Article  CAS  PubMed  Google Scholar 

  7. Breslau N, Roth T, Burduvali E, Kapke A, Schultz L, Roehrs T. Sleep in lifetime posttraumatic stress disorder: a community-based polysomnographic study. Arch Gen Psychiatry. 2004;61(5):508–16. https://doi.org/10.1001/archpsyc.61.5.508.

    Article  PubMed  Google Scholar 

  8. Boeve BF, Silber MH, Ferman TJ, Lucas JA, Parisi JE. Association of REM sleep behavior disorder and neurodegenerative disease may reflect an underlying synucleinopathy. Mov Disord. 2001;16(4):622–30. https://doi.org/10.1002/mds.1120.

    Article  CAS  PubMed  Google Scholar 

  9. Malik S, Boeve BF, Krahn LE, Silber MH. Narcolepsy associated with other central nervous system disorders. Neurology. 2001;57(3):539–41. https://doi.org/10.1212/wnl.57.3.539.

    Article  CAS  PubMed  Google Scholar 

  10. Boeve BF, Dickson DW, Olson EJ, Shepard JW, Silber MH, Ferman TJ, et al. Insights into REM sleep behavior disorder pathophysiology in brainstem-predominant Lewy body disease. Sleep Med. 2007;8(1):60–4. https://doi.org/10.1016/j.sleep.2006.08.017.

    Article  CAS  PubMed  Google Scholar 

  11. Boeve BF, Saper CB. REM sleep behavior disorder: a possible early marker for synucleinopathies. Neurology. 2006;66(6):796–7. https://doi.org/10.1212/01.wnl.0000209264.61035.bb.

    Article  PubMed  Google Scholar 

  12. Boeve BF, Silber MH, Saper CB, Ferman TJ, Dickson DW, Parisi JE, et al. Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain. 2007;130(Pt 11):2770–88. https://doi.org/10.1093/brain/awm056.

    Article  CAS  PubMed  Google Scholar 

  13. Postuma RB, Gagnon JF, Vendette M, Charland K, Montplaisir J. REM sleep behaviour disorder in Parkinson's disease is associated with specific motor features. J Neurol Neurosurg Psychiatry. 2008;79(10):1117–21. https://doi.org/10.1136/jnnp.2008.149195.

    Article  CAS  PubMed  Google Scholar 

  14. Poryazova RG, Zachariev ZI. REM sleep behavior disorder in patients with Parkinson’s disease. Folia Med. 2005;47(1):5–10.

    Google Scholar 

  15. Mallick BN, Singh A, Khanday MA. Activation of inactivation process initiates rapid eye movement sleep. Prog Neurobiol. 2012;97(3):259–76. https://doi.org/10.1016/j.pneurobio.2012.04.001.

    Article  PubMed  Google Scholar 

  16. Mehta R, Singh S, Khanday MA, Mallick BN. Reciprocal changes in noradrenaline and GABA levels in discrete brain regions upon rapid eye movement sleep deprivation in rats. Neurochem Int. 2017;108:190–8. https://doi.org/10.1016/j.neuint.2017.03.016.

    Article  CAS  PubMed  Google Scholar 

  17. Asikainen M, Deboer T, Porkka-Heiskanen T, Stenberg D, Tobler I. Sleep deprivation increases brain serotonin turnover in the Djungarian hamster. Neurosci Lett. 1995;198(1):21–4. https://doi.org/10.1016/0304-3940(95)11953-t.

    Article  CAS  PubMed  Google Scholar 

  18. Cosentino M, Marino F. Nerve driven immunity: noradrenaline and adrenaline. In: Levite M, editor. Nerve driven immunity: neurotransmitters and neuropeptides in the immune system. Vienna: Springer; 2012. p. 47–96.

    Chapter  Google Scholar 

  19. Francis BM, Yang J, Hajderi E, Brown ME, Michalski B, McLaurin J, et al. Reduced tissue levels of noradrenaline are associated with behavioral phenotypes of the TgCRND8 mouse model of Alzheimer's disease. Neuropsychopharmacology. 2012;37(8):1934–44. https://doi.org/10.1038/npp.2012.40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gonzalez MM, Debilly G, Valatx JL. Noradrenaline neurotoxin DSP-4 effects on sleep and brain temperature in the rat. Neurosci Lett. 1998;248(2):93–6. https://doi.org/10.1016/s0304-3940(98)00333-4.

    Article  CAS  PubMed  Google Scholar 

  21. Adolfsson R, Gottfries CG, Roos BE, Winblad B. Changes in the brain catecholamines in patients with dementia of Alzheimer type. Br J Psychiatry. 1979;135:216–23. https://doi.org/10.1192/bjp.135.3.216.

    Article  CAS  PubMed  Google Scholar 

  22. Berridge CW, Arnsten AF, Foote SL. Noradrenergic modulation of cognitive function: clinical implications of anatomical, electrophysiological and behavioural studies in animal models. Psychol Med. 1993;23(3):557–64. https://doi.org/10.1017/s0033291700025332.

    Article  CAS  PubMed  Google Scholar 

  23. Moret C, Briley M. The importance of norepinephrine in depression. Neuropsychiatr Dis Treat. 2011;7(Suppl 1):9–13. https://doi.org/10.2147/NDT.S19619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rommelfanger KS, Weinshenker D. Norepinephrine: the redheaded stepchild of Parkinson's disease. Biochem Pharmacol. 2007;74(2):177–90. https://doi.org/10.1016/j.bcp.2007.01.036.

    Article  CAS  PubMed  Google Scholar 

  25. Castro MA, Garcez MR, Pereira JL, Fisberg RM. Eating behaviours and dietary intake associations with self-reported sleep duration of free-living Brazilian adults. Appetite. 2019;137:207–17. https://doi.org/10.1016/j.appet.2019.02.020.

    Article  PubMed  Google Scholar 

  26. Noguti J, Andersen ML, Cirelli C, Ribeiro DA. Oxidative stress, cancer, and sleep deprivation: is there a logical link in this association? Sleep Breath. 2013;17(3):905–10. https://doi.org/10.1007/s11325-012-0797-9.

    Article  PubMed  Google Scholar 

  27. Schmidt MH, Swang TW, Hamilton IM, Best JA. State-dependent metabolic partitioning and energy conservation: a theoretical framework for understanding the function of sleep. PLoS One. 2017;12(10):e0185746. https://doi.org/10.1371/journal.pone.0185746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saghir Z, Syeda JN, Muhammad AS, Balla Abdalla TH. The amygdala, sleep debt, sleep deprivation, and the emotion of anger: a possible connection? Cureus. 2018;10(7):e2912. https://doi.org/10.7759/cureus.2912.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Adachi Y, Sawa R, Ueda M, Shimai S. The relationship between sleep and subjective mental health at one month postpartum in Japanese women. Nihon Koshu Eisei Zasshi. 2018;65(11):646–54.

    PubMed  Google Scholar 

  30. Zhu B, Shi C, Park CG, Zhao X, Reutrakul S. Effects of sleep restriction on metabolism-related parameters in healthy adults: a comprehensive review and meta-analysis of randomized controlled trials. Sleep Med Rev. 2019;45:18–30. https://doi.org/10.1016/j.smrv.2019.02.002.

    Article  PubMed  Google Scholar 

  31. Subramanian A, Adderley NJ, Tracy A, Taverner T, Hanif W, Toulis KA, et al. Risk of incident obstructive sleep apnea among patients with type 2 diabetes. Diabetes Care. 2019;42(5):954–63. https://doi.org/10.2337/dc18-2004.

    Article  CAS  PubMed  Google Scholar 

  32. Navarrete M, Lewis PA. Cognition: learning while asleep. Curr Biol. 2019;29(5):R164–R6. https://doi.org/10.1016/j.cub.2019.01.034.

    Article  CAS  PubMed  Google Scholar 

  33. Quera-Salva MA, Claustrat B. Melatonin: physiological and pharmacological aspects related to sleep: the interest of a prolonged-release formulation (Circadin®) in insomnia. L'Encephale. 2018;44(6):548–57. https://doi.org/10.1016/j.encep.2018.06.005.

    Article  PubMed  Google Scholar 

  34. Imeri L, Opp MR. How (and why) the immune system makes us sleep. Nat Rev Neurosci. 2009;10(3):199–210. https://doi.org/10.1038/nrn2576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Okamoto-Mizuno K, Mizuno K. Effects of thermal environment on sleep and circadian rhythm. J Physiol Anthropol. 2012;31:14. https://doi.org/10.1186/1880-6805-31-14.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wehrens SM, Hampton SM, Skene DJ. Heart rate variability and endothelial function after sleep deprivation and recovery sleep among male shift and non-shift workers. Scand J Work Environ Health. 2012;38(2):171–81. https://doi.org/10.5271/sjweh.3197.

    Article  PubMed  Google Scholar 

  37. Nedeltcheva AV, Scheer FA. Metabolic effects of sleep disruption, links to obesity and diabetes. Curr Opin Endocrinol Diabetes Obes. 2014;21(4):293–8. https://doi.org/10.1097/MED.0000000000000082.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lasselin J, Rehman JU, Akerstedt T, Lekander M, Axelsson J. Effect of long-term sleep restriction and subsequent recovery sleep on the diurnal rhythms of white blood cell subpopulations. Brain Behav Immun. 2015;47:93–9. https://doi.org/10.1016/j.bbi.2014.10.004.

    Article  PubMed  Google Scholar 

  39. van Leeuwen WM, Lehto M, Karisola P, Lindholm H, Luukkonen R, Sallinen M, et al. Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP. PLoS One. 2009;4(2):e4589. https://doi.org/10.1371/journal.pone.0004589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jowko E, Rozanski P, Tomczak A. Effects of a 36-h survival training with sleep deprivation on oxidative stress and muscle damage biomarkers in young healthy men. Int J Environ Res Public Health. 2018;15(10). https://doi.org/10.3390/ijerph15102066.

  41. He J, Hsuchou H, He Y, Kastin AJ, Wang Y, Pan W. Sleep restriction impairs blood-brain barrier function. J Neurosci. 2014;34(44):14697–706. https://doi.org/10.1523/JNEUROSCI.2111-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hurtado-Alvarado G, Dominguez-Salazar E, Pavon L, Velazquez-Moctezuma J, Gomez-Gonzalez B. Blood-brain barrier disruption induced by chronic sleep loss: low-grade inflammation may be the link. J Immunol Res. 2016;2016:4576012. https://doi.org/10.1155/2016/4576012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Majumdar S, Mallick BN. Cytomorphometric changes in rat brain neurons after rapid eye movement sleep deprivation. Neuroscience. 2005;135(3):679–90. https://doi.org/10.1016/j.neuroscience.2005.06.085.

    Article  CAS  PubMed  Google Scholar 

  44. Rabat A, Gomez-Merino D, Roca-Paixao L, Bougard C, Van Beers P, Dispersyn G, et al. Differential kinetics in alteration and recovery of cognitive processes from a chronic sleep restriction in young healthy men. Front Behav Neurosci. 2016;10:95. https://doi.org/10.3389/fnbeh.2016.00095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang ZJ, Chen YC, Wang HN, Wang HH, Xue YY, Feng SF, et al. Electroconvulsive therapy improves antipsychotic and somnographic responses in adolescents with first-episode psychosis--a case-control study. Schizophr Res. 2012;137(1–3):97–103. https://doi.org/10.1016/j.schres.2012.01.037.

    Article  PubMed  Google Scholar 

  46. Yamashita H, Mori K, Nagao M, Okamoto Y, Morinobu S, Yamawaki S. Effects of changing from typical to atypical antipsychotic drugs on subjective sleep quality in patients with schizophrenia in a Japanese population. J Clin Psychiatry. 2004;65(11):1525–30. https://doi.org/10.4088/jcp.v65n1114.

    Article  PubMed  Google Scholar 

  47. Hyyppa MT, Kronholm E. Quality of sleep and chronic illnesses. J Clin Epidemiol. 1989;42(7):633–8. https://doi.org/10.1016/0895-4356(89)90006-1.

    Article  CAS  PubMed  Google Scholar 

  48. Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213. https://doi.org/10.1016/0165-1781(89)90047-4.

    Article  CAS  PubMed  Google Scholar 

  49. Harvey AG, Stinson K, Whitaker KL, Moskovitz D, Virk H. The subjective meaning of sleep quality: a comparison of individuals with and without insomnia. Sleep. 2008;31(3):383–93. https://doi.org/10.1093/sleep/31.3.383.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Akerstedt T, Hume K, Minors D, Waterhouse J. The subjective meaning of good sleep, an intraindividual approach using the Karolinska sleep diary. Percept Mot Skills. 1994;79(1 Pt 1):287–96. https://doi.org/10.2466/pms.1994.79.1.287.

    Article  CAS  PubMed  Google Scholar 

  51. Kalkbrenner C, Stark P, Kouemou G, Algorri ME, Brucher R. Sleep monitoring using body sounds and motion tracking. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:6941–4. https://doi.org/10.1109/EMBC.2014.6945224.

    Article  Google Scholar 

  52. Girschik J, Heyworth J, Fritschi L. Reliability of a sleep quality questionnaire for use in epidemiologic studies. J Epidemiol. 2012;22(3):244–50. https://doi.org/10.2188/jea.je20110107.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Valipour A, Lothaller H, Rauscher H, Zwick H, Burghuber OC, Lavie P. Gender-related differences in symptoms of patients with suspected breathing disorders in sleep: a clinical population study using the sleep disorders questionnaire. Sleep. 2007;30(3):312–9. https://doi.org/10.1093/sleep/30.3.312.

    Article  PubMed  Google Scholar 

  54. Hsieh YP, Lu WH, Yen CF. Psychosocial determinants of insomnia in adolescents: roles of mental health, behavioral health, and social environment. Front Neurosci. 2019;13:848. https://doi.org/10.3389/fnins.2019.00848.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Thakkar MM, Sharma R, Sahota P. Alcohol disrupts sleep homeostasis. Alcohol. 2015;49(4):299–310. https://doi.org/10.1016/j.alcohol.2014.07.019.

    Article  CAS  PubMed  Google Scholar 

  56. Pigeon WR, Pinquart M, Conner K. Meta-analysis of sleep disturbance and suicidal thoughts and behaviors. J Clin Psychiatry. 2012;73(9):e1160–7. https://doi.org/10.4088/JCP.11r07586.

    Article  PubMed  Google Scholar 

  57. Bernert RA, Hom MA, Iwata NG, Joiner TE. Objectively assessed sleep variability as an acute warning sign of suicidal ideation in a longitudinal evaluation of young adults at high suicide risk. J Clin Psychiatry. 2017;78(6):e678–e87. https://doi.org/10.4088/JCP.16m11193.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Alhola P, Polo-Kantola P. Sleep deprivation: impact on cognitive performance. Neuropsychiatr Dis Treat. 2007;3(5):553–67.

    PubMed  PubMed Central  Google Scholar 

  59. Dinges DF, Rogers NL, Baynard MD. Chronic sleep deprivation. In: Kryger MHRT, Dement WC, editors. Principles and practice of sleep medicine. Philadelphia: Elsevier/ Saunders; 2005. p. 67–76.

    Chapter  Google Scholar 

  60. Cirelli C, Tononi G. Is sleep essential? PLoS Biol. 2008;6(8):e216.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Coplan JD, Andrews MW, Rosenblum LA, Owens MJ, Friedman S, Gorman JM, et al. Persistent elevations of cerebrospinal fluid concentrations of corticotropin-releasing factor in adult nonhuman primates exposed to early-life stressors: implications for the pathophysiology of mood and anxiety disorders. Proc Natl Acad Sci U S A. 1996;93(4):1619–23. https://doi.org/10.1073/pnas.93.4.1619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, et al. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science. 1997;277(5332):1659–62. https://doi.org/10.1126/science.277.5332.1659.

    Article  CAS  PubMed  Google Scholar 

  63. Meaney MJ, Aitken DH, Bhatnagar S, Sapolsky RM. Postnatal handling attenuates certain neuroendocrine, anatomical, and cognitive dysfunctions associated with aging in female rats. Neurobiol Aging. 1991;12(1):31–8. https://doi.org/10.1016/0197-4580(91)90036-j.

    Article  CAS  PubMed  Google Scholar 

  64. Plotsky PM, Meaney MJ. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res Mol Brain Res. 1993;18(3):195–200. https://doi.org/10.1016/0169-328x(93)90189-v.

    Article  CAS  PubMed  Google Scholar 

  65. Seckl JR, Meaney MJ. Early life events and later development of ischaemic heart disease. Lancet. 1993;342(8881):1236. https://doi.org/10.1016/0140-6736(93)92215-f.

    Article  CAS  PubMed  Google Scholar 

  66. Golubnitschaja O, Costigliola V, EPMA. General report & recommendations in predictive, preventive and personalised medicine 2012: white paper of the European Association for Predictive, Preventive and Personalised Medicine. EPMA J. 2012;3(1):14. https://doi.org/10.1186/1878-5085-3-14.

  67. Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. EPMA J. 2016;7:23. https://doi.org/10.1186/s13167-016-0072-4.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhao Z, Zhao X, Veasey SC. Neural consequences of chronic short sleep: reversible or lasting? Front Neurol. 2017;8:235. https://doi.org/10.3389/fneur.2017.00235.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ohayon MM, Reynolds CF 3rd, Dauvilliers Y. Excessive sleep duration and quality of life. Ann Neurol. 2013;73(6):785–94. https://doi.org/10.1002/ana.23818.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang B, Wing YK. Sex differences in insomnia: a meta-analysis. Sleep. 2006;29(1):85–93. https://doi.org/10.1093/sleep/29.1.85.

    Article  PubMed  Google Scholar 

  71. Wheaton AG, Perry GS, Chapman DP, Croft JB. Sleep disordered breathing and depression among U.S. adults: National Health and Nutrition Examination Survey, 2005–2008. Sleep. 2012;35:461–7.

  72. Mirmiran M, Yolanda MGH. The function of fetal/ neonatal REM sleep. In: Mallick BN, Inoue S, editors. Rapid eye movement sleep. NewYork: Marcel Dekker; 1999. p. 326–36.

    Google Scholar 

  73. Guzman-Marin R, Suntsova N, Bashir T, Nienhuis R, Szymusiak R, McGinty D. Rapid eye movement sleep deprivation contributes to reduction of neurogenesis in the hippocampal dentate gyrus of the adult rat. Sleep. 2008;31(2):167–75. https://doi.org/10.1093/sleep/31.2.167.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mehta R, Khan S, Mallick BN. Relevance of deprivation studies in understanding rapid eye movement sleep. Nat Sci Sleep. 2018;10:143–58. https://doi.org/10.2147/NSS.S140621.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Moruzzi G. The sleep-waking cycle. Ergeb Physiol Biol Chem Exp Pharmakol. 1972;64:1–165. https://doi.org/10.1007/3-540-05462-6_1.

    Article  CAS  Google Scholar 

  76. Siegel J. Brainstem mechanisms generating REM sleep. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 1st ed. Philadelphia: Saunders; 1989. p. 104–20.

    Google Scholar 

  77. Siegel JM, Tomaszewski KS, Nienhuis R. Behavioral states in the chronic medullary and midpontine cat. Electroencephalogr Clin Neurophysiol. 1986;63(3):274–88. https://doi.org/10.1016/0013-4694(86)90095-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Siegel JM, Nienhuis R, Tomaszewski KS. Rostral brainstem contributes to medullary inhibition of muscle tone. Brain Res. 1983;268(2):344–8. https://doi.org/10.1016/0006-8993(83)90501-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mallick BN, Siegel JM, Fahringer H. Changes in pontine unit activity with REM sleep deprivation. Brain Res. 1990;515(1–2):94–8. https://doi.org/10.1016/0006-8993(90)90581-u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Alam MN, Gong H, Alam T, Jaganath R, McGinty D, Szymusiak R. Sleep-waking discharge patterns of neurons recorded in the rat perifornical lateral hypothalamic area. J Physiol. 2002;538(Pt 2):619–31. https://doi.org/10.1113/jphysiol.2001.012888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lin JS, Sakai K, Jouvet M. Role of hypothalamic histaminergic systems in the regulation of vigilance states in cats. C R Acad Sci III. 1986;303(11):469–74.

    CAS  PubMed  Google Scholar 

  82. Takakusaki K, Saitoh K, Harada H, Okumura T, Sakamoto T. Evidence for a role of basal ganglia in the regulation of rapid eye movement sleep by electrical and chemical stimulation for the pedunculopontine tegmental nucleus and the substantia nigra pars reticulata in decerebrate cats. Neuroscience. 2004;124(1):207–20. https://doi.org/10.1016/j.neuroscience.2003.10.028.

    Article  CAS  PubMed  Google Scholar 

  83. Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Curr Neuropharmacol. 2008;6(3):254–85. https://doi.org/10.2174/157015908785777193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Andrews GD, Lavin A. Methylphenidate increases cortical excitability via activation of alpha-2 noradrenergic receptors. Neuropsychopharmacology. 2006;31(3):594–601. https://doi.org/10.1038/sj.npp.1300818.

    Article  CAS  PubMed  Google Scholar 

  85. Jodo E, Chiang C, Aston-Jones G. Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons. Neuroscience. 1998;83(1):63–79. https://doi.org/10.1016/s0306-4522(97)00372-2.

    Article  CAS  PubMed  Google Scholar 

  86. Jha SK, Mallick BN. Modulation of REM sleep by non-REM sleep and waking areas in the brain. In: Mallick BN, Pandi-Permual SR, McCarley RW, Morrison AR, editors. Rapid eye movement sleep – regulation and function. New York: Cambridge University Press; 2011. p. 173–82.

    Chapter  Google Scholar 

  87. McCarley RW, Hobson JA. Discharge patterns of cat pontine brain stem neurons during desynchronized sleep. J Neurophysiol. 1975;38(4):751–66. https://doi.org/10.1152/jn.1975.38.4.751.

    Article  CAS  PubMed  Google Scholar 

  88. Rasmussen K, Morilak DA, Jacobs BL. Single unit activity of locus coeruleus neurons in the freely moving cat. I. during naturalistic behaviors and in response to simple and complex stimuli. Brain Res. 1986;371(2):324–34. https://doi.org/10.1016/0006-8993(86)90370-7.

    Article  CAS  PubMed  Google Scholar 

  89. Chu NS, Bloom FE. Activity patterns of catecholamine-containing pontine neurons in the dorso-lateral tegmentum of unrestrained cats. J Neurobiol. 1974;5(6):527–44. https://doi.org/10.1002/neu.480050605.

    Article  CAS  PubMed  Google Scholar 

  90. Jacobs BL, Fornal CA. Activity of brain serotonergic neurons in the behaving animal. Pharmacol Rev. 1991;43(4):563–78.

    CAS  PubMed  Google Scholar 

  91. McGinty DJ, Harper RM. Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res. 1976;101(3):569–75. https://doi.org/10.1016/0006-8993(76)90480-7.

    Article  CAS  PubMed  Google Scholar 

  92. Monti JM, Jantos H. Activation of the serotonin 5-HT3 receptor in the dorsal raphe nucleus suppresses REM sleep in the rat. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32(4):940–7. https://doi.org/10.1016/j.pnpbp.2007.12.024.

    Article  CAS  Google Scholar 

  93. Miller JD, Farber J, Gatz P, Roffwarg H, German DC. Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and walking in the rat. Brain Res. 1983;273(1):133–41. https://doi.org/10.1016/0006-8993(83)91101-0.

    Article  CAS  PubMed  Google Scholar 

  94. Lu J, Sherman D, Devor M, Saper CB. A putative flip-flop switch for control of REM sleep. Nature. 2006;441(7093):589–94. https://doi.org/10.1038/nature04767.

    Article  CAS  PubMed  Google Scholar 

  95. Sakai K, Kanamori N. Are there non-monoaminergic paradoxical sleep-off neurons in the brainstem? Sleep Res Online. 1999;2:57–63.

    CAS  PubMed  Google Scholar 

  96. Mallick BN, Fahringer HM, Wu MF, Siegel JM. REM sleep deprivation reduces auditory evoked inhibition of dorsolateral pontine neurons. Brain Res. 1991;552(2):333–7. https://doi.org/10.1016/0006-8993(91)90100-a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Thakkar M, Portas C, McCarley RW. Chronic low-amplitude electrical stimulation of the laterodorsal tegmental nucleus of freely moving cats increases REM sleep. Brain Res. 1996;723(1–2):223–7. https://doi.org/10.1016/0006-8993(96)00256-9.

    Article  CAS  PubMed  Google Scholar 

  98. Kaur S, Saxena RN, Mallick BN. GABAergic neurons in prepositus hypoglossi regulate REM sleep by its action on locus coeruleus in freely moving rats. Synapse. 2001;42(3):141–50. https://doi.org/10.1002/syn.1109.

    Article  CAS  PubMed  Google Scholar 

  99. Mallick BN, Kaur S, Saxena RN. Interactions between cholinergic and GABAergic neurotransmitters in and around the locus coeruleus for the induction and maintenance of rapid eye movement sleep in rats. Neuroscience. 2001;104(2):467–85. https://doi.org/10.1016/s0306-4522(01)00062-8.

    Article  CAS  PubMed  Google Scholar 

  100. Singh S, Mallick BN. Mild electrical stimulation of pontine tegmentum around locus coeruleus reduces rapid eye movement sleep in rats. Neurosci Res. 1996;24(3):227–35. https://doi.org/10.1016/0168-0102(95)00998-1.

    Article  CAS  PubMed  Google Scholar 

  101. Nitz D, Siegel J. GABA release in the dorsal raphe nucleus: role in the control of REM sleep. Am J Phys. 1997;273(1 Pt 2):R451–5. https://doi.org/10.1152/ajpregu.1997.273.1.R451.

    Article  CAS  Google Scholar 

  102. Hobson JA, Goldberg M, Vivaldi E, Riew D. Enhancement of desynchronized sleep signs after pontine microinjection of the muscarinic agonist bethanechol. Brain Res. 1983;275(1):127–36. https://doi.org/10.1016/0006-8993(83)90424-9.

    Article  CAS  PubMed  Google Scholar 

  103. Aston-Jones G, Akaoka H, Charlety P, Chouvet G. Serotonin selectively attenuates glutamate-evoked activation of noradrenergic locus coeruleus neurons. J Neurosci. 1991;11(3):760–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ennis M, Aston-Jones G. Evidence for self- and neighbor-mediated postactivation inhibition of locus coeruleus neurons. Brain Res. 1986;374(2):299–305. https://doi.org/10.1016/0006-8993(86)90424-5.

    Article  CAS  PubMed  Google Scholar 

  105. Gottesmann C. Noradrenaline involvement in basic and higher integrated REM sleep processes. Prog Neurobiol. 2008;85(3):237–72. https://doi.org/10.1016/j.pneurobio.2008.04.002.

    Article  CAS  PubMed  Google Scholar 

  106. Jones BE. Arousal and sleep circuits. Neuropsychopharmacology. 2020;45(1):6–20. https://doi.org/10.1038/s41386-019-0444-2.

    Article  CAS  PubMed  Google Scholar 

  107. Pal D, Madan V, Mallick BN. Neural mechanism of rapid eye movement sleep generation: cessation of locus coeruleus neurons is a necessity. Sheng Li Xue Bao. 2005;57(4):401–13.

    CAS  PubMed  Google Scholar 

  108. Kumar R, Bose A, Mallick BN. A mathematical model towards understanding the mechanism of neuronal regulation of wake-NREMS-REMS states. PLoS One. 2012;7(8):e42059. https://doi.org/10.1371/journal.pone.0042059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mehta R, Singh A, Mallick BN. Disciplined sleep for healthy living: role of noradrenaline. World J Neurol. 2017;7(1):6–23.

    Article  Google Scholar 

  110. Matos G, Tufik S, Scorza FA, Cavalheiro EA, Andersen ML. Sleep and epilepsy: exploring an intriguing relationship with a translational approach. Epilepsy Behav. 2013;26(3):405–9. https://doi.org/10.1016/j.yebeh.2012.12.003.

    Article  PubMed  Google Scholar 

  111. Garcia-Alberca JM, Lara JP, Cruz B, Garrido V, Gris E, Barbancho MA. Sleep disturbances in Alzheimer’s disease are associated with neuropsychiatric symptoms and antidementia treatment. J Nerv Ment Dis. 2013;201(3):251–7. https://doi.org/10.1097/NMD.0b013e3182848d04.

    Article  PubMed  Google Scholar 

  112. Lima MM. Sleep disturbances in Parkinson’s disease: the contribution of dopamine in REM sleep regulation. Sleep Med Rev. 2013;17(5):367–75. https://doi.org/10.1016/j.smrv.2012.10.006.

    Article  PubMed  Google Scholar 

  113. Gagnon JF, Petit D, Latreille V, Montplaisir J. Neurobiology of sleep disturbances in neurodegenerative disorders. Curr Pharm Des. 2008;14(32):3430–45. https://doi.org/10.2174/138161208786549353.

    Article  CAS  PubMed  Google Scholar 

  114. Dodt C, Breckling U, Derad I, Fehm HL, Born J. Plasma epinephrine and norepinephrine concentrations of healthy humans associated with nighttime sleep and morning arousal. Hypertension. 1997;30(1 Pt 1):71–6. https://doi.org/10.1161/01.hyp.30.1.71.

    Article  CAS  PubMed  Google Scholar 

  115. Kaur S, Saxena RN, Mallick BN. GABA in locus coeruleus regulates spontaneous rapid eye movement sleep by acting on GABAA receptors in freely moving rats. Neurosci Lett. 1997;223(2):105–8. https://doi.org/10.1016/s0304-3940(97)13410-3.

    Article  CAS  PubMed  Google Scholar 

  116. Kawahara Y, Kawahara H, Westerink BH. Tonic regulation of the activity of noradrenergic neurons in the locus coeruleus of the conscious rat studied by dual-probe microdialysis. Brain Res. 1999;823(1–2):42–8. https://doi.org/10.1016/s0006-8993(99)01062-8.

    Article  CAS  PubMed  Google Scholar 

  117. Pollock MS, Mistlberger RE. Rapid eye movement sleep induction by microinjection of the GABA-A antagonist bicuculline into the dorsal subcoeruleus area of the rat. Brain Res. 2003;962(1–2):68–77. https://doi.org/10.1016/s0006-8993(02)03956-2.

    Article  CAS  PubMed  Google Scholar 

  118. Sakai K, Crochet S. A neural mechanism of sleep and wakefulness. Sleep Biol Rhythms. 2003;1:29–42.

    Article  Google Scholar 

  119. Masserano JM, King C. Effects on sleep of acetylcholine perfusion of the locus coeruleus of cats. Neuropharmacology. 1982;21(11):1163–7. https://doi.org/10.1016/0028-3908(82)90174-5.

    Article  CAS  PubMed  Google Scholar 

  120. Bourgin P, Huitron-Resendiz S, Spier AD, Fabre V, Morte B, Criado JR, et al. Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J Neurosci. 2000;20:7760–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chen L, McKenna JT, Bolortuya Y, Winston S, Thakkar MM, Basheer R, et al. Knockdown of orexin type 1 receptor in rat locus coeruleus increases REM sleep during the dark period. Eur J Neurosci. 2010;32(9):1528–36. https://doi.org/10.1111/j.1460-9568.2010.07401.x.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2010;13(12):1526–33. https://doi.org/10.1038/nn.2682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lin JS, Sakai K, Jouvet M. Hypothalamo-preoptic histaminergic projections in sleep-wake control in the cat. Eur J Neurosci. 1994;6(4):618–25. https://doi.org/10.1111/j.1460-9568.1994.tb00306.x.

    Article  CAS  PubMed  Google Scholar 

  124. Bjorvatn B, Fagerland S, Eid T, Ursin R. Sleep/waking effects of a selective 5-HT1A receptor agonist given systemically as well as perfused in the dorsal raphe nucleus in rats. Brain Res. 1997;770(1–2):81–8. https://doi.org/10.1016/s0006-8993(97)00758-0.

    Article  CAS  PubMed  Google Scholar 

  125. Alam MA, Mallick BN. Glutamic acid stimulation of the perifornical-lateral hypothalamic area promotes arousal and inhibits non-REM/REM sleep. Neurosci Lett. 2008;439(3):281–6. https://doi.org/10.1016/j.neulet.2008.05.042.

    Article  CAS  PubMed  Google Scholar 

  126. Nunez A, Moreno-Balandran ME, Rodrigo-Angulo ML, Garzon M, De Andres I. Relationship between the perifornical hypothalamic area and oral pontine reticular nucleus in the rat. Possible implication of the hypocretinergic projection in the control of rapid eye movement sleep. Eur J Neurosci. 2006;24(10):2834–42. https://doi.org/10.1111/j.1460-9568.2006.05159.x.

    Article  CAS  PubMed  Google Scholar 

  127. Choudhary RC, Khanday MA, Mitra A, Mallick BN. Perifornical orexinergic neurons modulate REM sleep by influencing locus coeruleus neurons in rats. Neuroscience. 2014;279:33–43. https://doi.org/10.1016/j.neuroscience.2014.08.017.

    Article  CAS  PubMed  Google Scholar 

  128. Horvath TL, Peyron C, Diano S, Ivanov A, Aston-Jones G, Kilduff TS, et al. Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol. 1999;415(2):145–59. https://doi.org/10.1002/(SICI)1096-9861(19991213)415:2<145::AID-CNE1>3.0.CO;2-2.

    Article  CAS  PubMed  Google Scholar 

  129. Panula P, Pirvola U, Auvinen S, Airaksinen MS. Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience. 1989;28(3):585–610. https://doi.org/10.1016/0306-4522(89)90007-9.

    Article  CAS  PubMed  Google Scholar 

  130. Segal M. Serotonergic innervation of the locus coeruleus from the dorsal raphe and its action on responses to noxious stimuli. J Physiol. 1979;286:401–15. https://doi.org/10.1113/jphysiol.1979.sp012628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Monti JM, Monti D. The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev. 2007;11(2):113–33. https://doi.org/10.1016/j.smrv.2006.08.003.

    Article  PubMed  Google Scholar 

  132. Pal D, Mallick BN. GABA in pedunculopontine tegmentum increases rapid eye movement sleep in freely moving rats: possible role of GABA-ergic inputs from substantia nigra pars reticulata. Neuroscience. 2009;164(2):404–14. https://doi.org/10.1016/j.neuroscience.2009.08.025.

    Article  CAS  PubMed  Google Scholar 

  133. Mignot E. Genetic and familial aspects of narcolepsy. Neurology. 1998;50(2 Suppl 1):S16–22. https://doi.org/10.1212/wnl.50.2_suppl_1.s16.

    Article  CAS  PubMed  Google Scholar 

  134. Mignot E, Lin L, Rogers W, Honda Y, Qiu X, Lin X, et al. Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am J Hum Genet. 2001;68(3):686–99. https://doi.org/10.1086/318799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Medic G, Wille M, Hemels ME. Short- and long-term health consequences of sleep disruption. Nat Sci Sleep. 2017;9:151–61. https://doi.org/10.2147/NSS.S134864.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kitsaras G, Goodwin M, Allan J, Kelly MP, Pretty IA. Bedtime routines child wellbeing & development. BMC Public Health. 2018;18(1):386. https://doi.org/10.1186/s12889-018-5290-3.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Mindell JA, Telofski LS, Wiegand B, Kurtz ES. A nightly bedtime routine: impact on sleep in young children and maternal mood. Sleep. 2009;32(5):599–606. https://doi.org/10.1093/sleep/32.5.599.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Burgess HJ, Molina TA. Home lighting before usual bedtime impacts circadian timing: a field study. Photochem Photobiol. 2014;90(3):723–6. https://doi.org/10.1111/php.12241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gooley JJ, Chamberlain K, Smith KA, Khalsa SB, Rajaratnam SM, Van Reen E, et al. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J Clin Endocrinol Metab. 2011;96(3):E463–72. https://doi.org/10.1210/jc.2010-2098.

    Article  CAS  PubMed  Google Scholar 

  140. Davis SN, Galassetti P, Wasserman DH, Tate D. Effects of gender on neuroendocrine and metabolic counterregulatory responses to exercise in normal man. J Clin Endocrinol Metab. 2000;85(1):224–30. https://doi.org/10.1210/jcem.85.1.6328.

    Article  CAS  PubMed  Google Scholar 

  141. Drake C, Roehrs T, Shambroom J, Roth T. Caffeine effects on sleep taken 0, 3, or 6 hours before going to bed. J Clin Sleep Med. 2013;9(11):1195–200. https://doi.org/10.5664/jcsm.3170.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Spadola CE, Guo N, Johnson DA, Sofer T, Bertisch SM, Jackson CL, et al. Evening intake of alcohol, caffeine, and nicotine: night-to-night associations with sleep duration and continuity among African Americans in the Jackson Heart Sleep Study. Sleep. 2019;42(11). https://doi.org/10.1093/sleep/zsz136.

  143. Nisar M, Mohammad RM, Arshad A, Hashmi I, Yousuf SM, Baig S. Influence of dietary intake on sleeping patterns of medical students. Cureus. 2019;11(2):e4106. https://doi.org/10.7759/cureus.4106.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Zeng Y, Yang J, Du J, Pu X, Yang X, Yang S, et al. Strategies of functional foods promote sleep in human being. Curr Signal Transduct Ther. 2014;9(3):148–55. https://doi.org/10.2174/1574362410666150205165504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. St-Onge MP, Mikic A, Pietrolungo CE. Effects of diet on sleep quality. Adv Nutr. 2016;7(5):938–49. https://doi.org/10.3945/an.116.012336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Herzog J, Schmidt FP, Hahad O, Mahmoudpour SH, Mangold AK, Garcia Andreo P, et al. Acute exposure to nocturnal train noise induces endothelial dysfunction and pro-thromboinflammatory changes of the plasma proteome in healthy subjects. Basic Res Cardiol. 2019;114(6):46. https://doi.org/10.1007/s00395-019-0753-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bo S, Broglio F, Settanni F, Parasiliti Caprino M, Ianniello A, Mengozzi G, et al. Effects of meal timing on changes in circulating epinephrine, norepinephrine, and acylated ghrelin concentrations: a pilot study. Nutr Diabetes. 2017;7(12):303. https://doi.org/10.1038/s41387-017-0010-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wellman PJ. Norepinephrine and the control of food intake. Nutrition. 2000;16(10):837–42. https://doi.org/10.1016/s0899-9007(00)00415-9.

    Article  CAS  PubMed  Google Scholar 

  149. Matsumura T, Nakagawa H, Suzuki K, Ninomiya C, Ishiwata T. Influence of circadian disruption on neurotransmitter levels, physiological indexes, and behaviour in rats. Chronobiol Int. 2015;32(10):1449–57. https://doi.org/10.3109/07420528.2015.1105250.

    Article  CAS  PubMed  Google Scholar 

  150. Evans GW, Bullinger M, Hygge S. Chronic noise exposure and physiological response: a prospective study of children living under environmental stress. Psychol Sci. 1998;9(1):75–7.

    Article  Google Scholar 

  151. Minami M, Aimoto A, Kabuto M. Individual differences in sympathetic nervous system responses to white noise stimuli: an investigation by finger plethysmogram. Nihon Eiseigaku Zasshi. 1993;48(2):646–54. https://doi.org/10.1265/jjh.48.646.

    Article  CAS  PubMed  Google Scholar 

  152. Fu Y, Matta SG, Valentine JD, Sharp BM. Adrenocorticotropin response and nicotine-induced norepinephrine secretion in the rat paraventricular nucleus are mediated through brainstem receptors. Endocrinology. 1997;138(5):1935–43. https://doi.org/10.1210/endo.138.5.5122.

    Article  CAS  PubMed  Google Scholar 

  153. Herraiz T, Chaparro C. Human monoamine oxidase is inhibited by tobacco smoke: beta-carboline alkaloids act as potent and reversible inhibitors. Biochem Biophys Res Commun. 2005;326(2):378–86. https://doi.org/10.1016/j.bbrc.2004.11.033.

    Article  CAS  PubMed  Google Scholar 

  154. Brower KJ. Alcohol's effects on sleep in alcoholics. Alcohol Res Health. 2001;25(2):110–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Smith A, Brice C, Nash J, Rich N, Nutt DJ. Caffeine and central noradrenaline: effects on mood, cognitive performance, eye movements and cardiovascular function. J Psychopharmacol. 2003;17(3):283–92. https://doi.org/10.1177/02698811030173010.

    Article  CAS  PubMed  Google Scholar 

  156. Selikhova MV, Kogan BM, Serkin GV, Gusev EI. Catecholamine metabolism in different forms of Parkinson's disease. Zh Nevrol Psikhiatr Im S S Korsakova. 2002;102(9):37–40.

    CAS  PubMed  Google Scholar 

  157. Paredes-Rodriguez E, Vegas-Suarez S, Morera-Herreras T, De Deurwaerdere P, Miguelez C. The noradrenergic system in Parkinson’s disease. Front Pharmacol. 2020;11:435. https://doi.org/10.3389/fphar.2020.00435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Chalermpalanupap T, Kinkead B, Hu WT, Kummer MP, Hammerschmidt T, Heneka MT, et al. Targeting norepinephrine in mild cognitive impairment and Alzheimer’s disease. Alzheimers Res Ther. 2013;5(2):21. https://doi.org/10.1186/alzrt175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. De Bellis MD, Zisk A. The biological effects of childhood trauma. Child Adolesc Psychiatr Clin N Am. 2014;23(2):185–222, vii. https://doi.org/10.1016/j.chc.2014.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Drake CL, Roehrs T, Richardson G, Walsh JK, Roth T. Shift work sleep disorder: prevalence and consequences beyond that of symptomatic day workers. Sleep. 2004;27(8):1453–62. https://doi.org/10.1093/sleep/27.8.1453.

    Article  PubMed  Google Scholar 

  161. Goekoop JG, de Winter RF, Wolterbeek R, Van Kempen GM, Wiegant VM. Increased plasma norepinephrine concentration in psychotic depression. Ther Adv Psychopharmacol. 2012;2(2):51–63. https://doi.org/10.1177/2045125312436574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328(17):1230–5. https://doi.org/10.1056/NEJM199304293281704.

    Article  CAS  PubMed  Google Scholar 

  163. Shamsuzzaman AS, Gersh BJ, Somers VK. Obstructive sleep apnea: implications for cardiac and vascular disease. JAMA. 2003;290(14):1906–14. https://doi.org/10.1001/jama.290.14.1906.

    Article  CAS  PubMed  Google Scholar 

  164. DeMesquita S, Hale GA. Cardiopulmonary regulation after rapid-eye-movement sleep deprivation. J Appl Physiol. 1992;72(3):970–6. https://doi.org/10.1152/jappl.1992.72.3.970.

    Article  CAS  PubMed  Google Scholar 

  165. Palagini L, Baglioni C, Ciapparelli A, Gemignani A, Riemann D. REM sleep dysregulation in depression: state of the art. Sleep Med Rev. 2013;17(5):377–90. https://doi.org/10.1016/j.smrv.2012.11.001.

    Article  PubMed  Google Scholar 

  166. Bliwise DL, Tinklenberg J, Yesavage JA, Davies H, Pursley AM, Petta DE, et al. REM latency in Alzheimer’s disease. Biol Psychiatry. 1989;25(3):320–8. https://doi.org/10.1016/0006-3223(89)90179-0.

    Article  CAS  PubMed  Google Scholar 

  167. Colten HRAB. Extent and health consequences of chronic sleep loss and sleep disorders. In: Colten HR, Altevogt BM, editors. Sleep disorders and sleep deprivation: an unmet public health problem. Washington (DC): National Academies Press (US); 2006. p. 55–135.

    Google Scholar 

  168. Edinger JD, Means MK. Cognitive-behavioral therapy for primary insomnia. Clin Psychol Rev. 2005;25(5):539–58. https://doi.org/10.1016/j.cpr.2005.04.003.

    Article  PubMed  Google Scholar 

  169. Vgontzas AN, Bixler EO, Wittman AM, Zachman K, Lin HM, Vela-Bueno A, et al. Middle-aged men show higher sensitivity of sleep to the arousing effects of corticotropin-releasing hormone than young men: clinical implications. J Clin Endocrinol Metab. 2001;86(4):1489–95. https://doi.org/10.1210/jcem.86.4.7370.

    Article  CAS  PubMed  Google Scholar 

  170. Schwartz SW, Cornoni-Huntley J, Cole SR, Hays JC, Blazer DG, Schocken DD. Are sleep complaints an independent risk factor for myocardial infarction? Ann Epidemiol. 1998;8(6):384–92. https://doi.org/10.1016/s1047-2797(97)00238-x.

    Article  CAS  PubMed  Google Scholar 

  171. Ayas NT, White DP, Manson JE, Stampfer MJ, Speizer FE, Malhotra A, et al. A prospective study of sleep duration and coronary heart disease in women. Arch Intern Med. 2003;163(2):205–9. https://doi.org/10.1001/archinte.163.2.205.

    Article  PubMed  Google Scholar 

  172. de Souza L, Smaili SS, Ureshino RP, Sinigaglia-Coimbra R, Andersen ML, Lopes GS, et al. Effect of chronic sleep restriction and aging on calcium signaling and apoptosis in the hippocampus of young and aged animals. Prog Neuropsychopharmacol Biol Psychiatry. 2012;39(1):23–30. https://doi.org/10.1016/j.pnpbp.2012.01.018.

  173. Jarrin DC, Ivers H, Lamy M, Chen IY, Harvey AG, Morin CM. Cardiovascular autonomic dysfunction in insomnia patients with objective short sleep duration. J Sleep Res. 2018;27(3):e12663. https://doi.org/10.1111/jsr.12663.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Karadzic V, Dement WC. Heart rate changes following selective deprivation of rapid eye movement (REM) sleep. Brain Res. 1967;6(4):786–8. https://doi.org/10.1016/0006-8993(67)90138-2.

    Article  CAS  PubMed  Google Scholar 

  175. Jeddi S, Asl AN, Asgari A, Ghasemi A. The effect of sleep deprivation on cardiac function and tolerance to ischemia-reperfusion injury in male rats. Arq Bras Cardiol. 2016;106(1):41–8. https://doi.org/10.5935/abc.20150137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Jeddi S, Ghasemi A, Asgari A, Nezami-Asl A. Role of inducible nitric oxide synthase in myocardial ischemia-reperfusion injury in sleep-deprived rats. Sleep Breath. 2018;22(2):353–9. https://doi.org/10.1007/s11325-017-1573-7.

    Article  PubMed  Google Scholar 

  177. Lai KB, Sanderson JE, Yu CM. High dose norepinephrine-induced apoptosis in cultured rat cardiac fibroblast. Int J Cardiol. 2009;136(1):33–9. https://doi.org/10.1016/j.ijcard.2008.04.022.

    Article  PubMed  Google Scholar 

  178. Ma M, Wang L, Ma Y, Yang Y, Chen B, Zhu X. Effects of norepinephrine on proliferation and apoptosis of neonatal cardiac fibroblasts in rats. Zhonghua Xin Xue Guan Bing Za Zhi. 2015;43(6):542–7.

    CAS  PubMed  Google Scholar 

  179. Hipolide DC, D'Almeida V, Raymond R, Tufik S, Nobrega JN. Sleep deprivation does not affect indices of necrosis or apoptosis in rat brain. Int J Neurosci. 2002;112(2):155–66. https://doi.org/10.1080/00207450212022.

    Article  PubMed  Google Scholar 

  180. Breimer LH. Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis: the role of DNA base damage. Mol Carcinog. 1990;3(4):188–97. https://doi.org/10.1002/mc.2940030405.

    Article  CAS  PubMed  Google Scholar 

  181. D'Almeida V, Lobo LL, Hipolide DC, de Oliveira AC, Nobrega JN, Tufik S. Sleep deprivation induces brain region-specific decreases in glutathione levels. Neuroreport. 1998;9(12):2853–6. https://doi.org/10.1097/00001756-199808240-00031.

    Article  CAS  PubMed  Google Scholar 

  182. Winters BD, Huang YH, Dong Y, Krueger JM. Sleep loss alters synaptic and intrinsic neuronal properties in mouse prefrontal cortex. Brain Res. 2011;1420:1–7. https://doi.org/10.1016/j.brainres.2011.08.078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gulyani S, Mallick BN. Effect of rapid eye movement sleep deprivation on rat brain Na-K ATPase activity. J Sleep Res. 1993;2(1):45–50. https://doi.org/10.1111/j.1365-2869.1993.tb00060.x.

    Article  CAS  PubMed  Google Scholar 

  184. Zager A, Andersen ML, Ruiz FS, Antunes IB, Tufik S. Effects of acute and chronic sleep loss on immune modulation of rats. Am J Physiol Regul Integr Comp Physiol. 2007;293(1):R504–9. https://doi.org/10.1152/ajpregu.00105.2007.

    Article  CAS  PubMed  Google Scholar 

  185. Velazquez-Moctezuma J, Dominguez-Salazar E, Cortes-Barberena E, Najera-Medina O, Retana-Marquez S, Rodriguez-Aguilera E, et al. Differential effects of rapid eye movement sleep deprivation and immobilization stress on blood lymphocyte subsets in rats. Neuroimmunomodulation. 2004;11(4):261–7. https://doi.org/10.1159/000078445.

    Article  CAS  PubMed  Google Scholar 

  186. Yehuda S, Sredni B, Carasso RL, Kenigsbuch-Sredni D. REM sleep deprivation in rats results in inflammation and interleukin-17 elevation. J Interf Cytokine Res. 2009;29(7):393–8. https://doi.org/10.1089/jir.2008.0080.

    Article  CAS  Google Scholar 

  187. Ruiz FS, Andersen ML, Martins RC, Zager A, Lopes JD, Tufik S. Immune alterations after selective rapid eye movement or total sleep deprivation in healthy male volunteers. Innate Immunol. 2012;18(1):44–54. https://doi.org/10.1177/1753425910385962.

    Article  CAS  Google Scholar 

  188. Thakkar M, Mallick BN. Rapid eye movement sleep-deprivation-induced changes in glucose metabolic enzymes in rat brain. Sleep. 1993;16(8):691–4.

    CAS  PubMed  Google Scholar 

  189. Koban M, Swinson KL. Chronic REM-sleep deprivation of rats elevates metabolic rate and increases UCP1 gene expression in brown adipose tissue. Am J Physiol Endocrinol Metab. 2005;289(1):E68–74. https://doi.org/10.1152/ajpendo.00543.2004.

    Article  CAS  PubMed  Google Scholar 

  190. Streck EL, Scaini G, Jeremias GC, Rezin GT, Goncalves CL, Ferreira GK, et al. Effects of mood stabilizers on brain energy metabolism in mice submitted to an animal model of mania induced by paradoxical sleep deprivation. Neurochem Res. 2015;40(6):1144–52. https://doi.org/10.1007/s11064-015-1575-4.

    Article  CAS  PubMed  Google Scholar 

  191. Casanueva FF, Dieguez C, Popovic V, Peino R, Considine RV, Caro JF. Serum immunoreactive leptin concentrations in patients with anorexia nervosa before and after partial weight recovery. Biochem Mol Med. 1997;60(2):116–20. https://doi.org/10.1006/bmme.1996.2564.

    Article  CAS  PubMed  Google Scholar 

  192. Lieb W, Beiser AS, Vasan RS, Tan ZS, Au R, Harris TB, et al. Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA. 2009;302(23):2565–72. https://doi.org/10.1001/jama.2009.1836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Greco SJ, Bryan KJ, Sarkar S, Zhu X, Smith MA, Ashford JW, et al. Leptin reduces pathology and improves memory in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis. 2010;19(4):1155–67. https://doi.org/10.3233/JAD-2010-1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Everson CA, Toth LA. Systemic bacterial invasion induced by sleep deprivation. Am J Physiol Regul Integr Comp Physiol. 2000;278(4):R905–16. https://doi.org/10.1152/ajpregu.2000.278.4.R905.

    Article  CAS  PubMed  Google Scholar 

  195. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158. https://doi.org/10.1126/scitranslmed.3009759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kassab S, Sachdeva U, Das N, Al-Shaibani T, Nayar U. Cardiovascular responses to tonic pain in REM sleep-deprived rats: role of melatonin and beta endorphin. Sultan Qaboos Univ Med J. 2006;6(1):51–6.

    PubMed  PubMed Central  Google Scholar 

  197. Jiang J, Gan Z, Li Y, Zhao W, Li H, Zheng JP, et al. REM sleep deprivation induces endothelial dysfunction and hypertension in middle-aged rats: roles of the eNOS/NO/cGMP pathway and supplementation with L-arginine. PLoS One. 2017;12(8):e0182746. https://doi.org/10.1371/journal.pone.0182746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Joukar S, Ghorbani-Shahrbabaki S, Hajali V, Sheibani V, Naghsh N. Susceptibility to life-threatening ventricular arrhythmias in an animal model of paradoxical sleep deprivation. Sleep Med. 2013;14(12):1277–82. https://doi.org/10.1016/j.sleep.2013.07.008.

    Article  PubMed  Google Scholar 

  199. Zoladz PR, Krivenko A, Eisenmann ED, Bui AD, Seeley SL, Fry ME, et al. Sex-dependent effects of sleep deprivation on myocardial sensitivity to ischemic injury. Stress. 2016;19(2):264–8. https://doi.org/10.3109/10253890.2016.1152469.

    Article  PubMed  Google Scholar 

  200. Aggarwal A, Esler MD, Lambert GW, Hastings J, Johnston L, Kaye DM. Norepinephrine turnover is increased in suprabulbar subcortical brain regions and is related to whole-body sympathetic activity in human heart failure. Circulation. 2002;105(9):1031–3. https://doi.org/10.1161/hc0902.105724.

    Article  CAS  PubMed  Google Scholar 

  201. Bangalore S, Messerli FH, Kostis JB, Pepine CJ. Cardiovascular protection using beta-blockers: a critical review of the evidence. J Am Coll Cardiol. 2007;50(7):563–72. https://doi.org/10.1016/j.jacc.2007.04.060.

    Article  CAS  PubMed  Google Scholar 

  202. Vetrivelan R, Fuller PM, Yokota S, Lu J, Saper CB. Metabolic effects of chronic sleep restriction in rats. Sleep. 2012;35(11):1511–20. https://doi.org/10.5665/sleep.2200.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Jung CM, Melanson EL, Frydendall EJ, Perreault L, Eckel RH, Wright KP. Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J Physiol. 2011;589(Pt 1):235–44. https://doi.org/10.1113/jphysiol.2010.197517.

    Article  CAS  PubMed  Google Scholar 

  204. St-Onge MP, Roberts AL, Chen J, Kelleman M, O'Keeffe M, RoyChoudhury A, et al. Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals. Am J Clin Nutr. 2011;94(2):410–6. https://doi.org/10.3945/ajcn.111.013904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Brianza-Padilla M, Bonilla-Jaime H, Almanza-Perez JC, Lopez-Lopez AL, Sanchez-Munoz F, Vazquez-Palacios G. Effects of different periods of paradoxical sleep deprivation and sleep recovery on lipid and glucose metabolism and appetite hormones in rats. Appl Physiol Nutr Metab. 2016;41(3):235–43. https://doi.org/10.1139/apnm-2015-0337.

    Article  CAS  PubMed  Google Scholar 

  206. Yujra VQ, Antunes HKM, Monico-Neto M, Pisani LP, Santamarina AB, Quintana HT, et al. Sleep deprivation induces pathological changes in rat masticatory muscles: role of toll like signaling pathway and atrophy. J Cell Biochem. 2018;119(2):2269–77. https://doi.org/10.1002/jcb.26389.

    Article  CAS  PubMed  Google Scholar 

  207. Palma BD, Gabriel A Jr, Colugnati FA, Tufik S. Effects of sleep deprivation on the development of autoimmune disease in an experimental model of systemic lupus erythematosus. Am J Physiol Regul Integr Comp Physiol. 2006;291(5):R1527–32. https://doi.org/10.1152/ajpregu.00186.2006.

    Article  CAS  PubMed  Google Scholar 

  208. Kohm AP, Sanders VM. Norepinephrine: a messenger from the brain to the immune system. Immunol Today. 2000;21(11):539–42. https://doi.org/10.1016/s0167-5699(00)01747-3.

    Article  CAS  PubMed  Google Scholar 

  209. Das G, Mallick BN. Noradrenaline acting on alpha1-adrenoceptor mediates REM sleep deprivation-induced increased membrane potential in rat brain synaptosomes. Neurochem Int. 2008;52(4–5):734–40. https://doi.org/10.1016/j.neuint.2007.09.002.

    Article  CAS  PubMed  Google Scholar 

  210. McDermott CM, LaHoste GJ, Chen C, Musto A, Bazan NG, Magee JC. Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci. 2003;23(29):9687–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Singh A, Das G, Kaur M, Mallick BN. Noradrenaline acting on Alpha1 adrenoceptor as well as by chelating Iron reduces oxidative burden on the brain: implications with rapid eye movement sleep. Front Mol Neurosci. 2019;12:7. https://doi.org/10.3389/fnmol.2019.00007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Gomez-Gonzalez B, Hurtado-Alvarado G, Esqueda-Leon E, Santana-Miranda R, Rojas-Zamorano JA, Velazquez-Moctezuma J. REM sleep loss and recovery regulates blood-brain barrier function. Curr Neurovasc Res. 2013;10(3):197–207. https://doi.org/10.2174/15672026113109990002.

    Article  CAS  PubMed  Google Scholar 

  213. Carreras A, Zhang SX, Peris E, Qiao Z, Gileles-Hillel A, Li RC, et al. Chronic sleep fragmentation induces endothelial dysfunction and structural vascular changes in mice. Sleep. 2014;37(11):1817–24. https://doi.org/10.5665/sleep.4178.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Sarmento A, Borges N, Azevedo I. Adrenergic influences on the control of blood-brain barrier permeability. Naunyn Schmiedeberg's Arch Pharmacol. 1991;343(6):633–7. https://doi.org/10.1007/BF00184295.

    Article  CAS  Google Scholar 

  215. Petit D, Montplaisir J, Louis EKS, Boeve BF. Alzheimer disease and other dementias. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 6th ed. Philadelphia: Elsevier; 2017. p. 935–43.

    Chapter  Google Scholar 

  216. Boyce R, Glasgow SD, Williams S, Adamantidis A. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science. 2016;352(6287):812–6. https://doi.org/10.1126/science.aad5252.

    Article  CAS  PubMed  Google Scholar 

  217. Dumoulin Bridi MC, Aton SJ, Seibt J, Renouard L, Coleman T, Frank MG. Rapid eye movement sleep promotes cortical plasticity in the developing brain. Sci Adv. 2015;1(6):e1500105. https://doi.org/10.1126/sciadv.1500105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Smith CT, Conway JM, Rose GM. Brief paradoxical sleep deprivation impairs reference, but not working, memory in the radial arm maze task. Neurobiol Learn Mem. 1998;69(2):211–7. https://doi.org/10.1006/nlme.1997.3809.

    Article  CAS  PubMed  Google Scholar 

  219. Uhde TW, Roy-Byrne P, Gillin JC, Mendelson WB, Boulenger JP, Vittone BJ, et al. The sleep of patients with panic disorder: a preliminary report. Psychiatry Res. 1984;12(3):251–9. https://doi.org/10.1016/0165-1781(84)90030-1.

    Article  CAS  PubMed  Google Scholar 

  220. Vollert C, Zagaar M, Hovatta I, Taneja M, Vu A, Dao A, et al. Exercise prevents sleep deprivation-associated anxiety-like behavior in rats: potential role of oxidative stress mechanisms. Behav Brain Res. 2011;224(2):233–40. https://doi.org/10.1016/j.bbr.2011.05.010.

    Article  CAS  PubMed  Google Scholar 

  221. Silva RH, Kameda SR, Carvalho RC, Takatsu-Coleman AL, Niigaki ST, Abilio VC, et al. Anxiogenic effect of sleep deprivation in the elevated plus-maze test in mice. Psychopharmacology. 2004;176(2):115–22. https://doi.org/10.1007/s00213-004-1873-z.

    Article  CAS  PubMed  Google Scholar 

  222. Yin M, Chen Y, Zheng H, Pu T, Marshall C, Wu T, et al. Assessment of mouse cognitive and anxiety-like behaviors and hippocampal inflammation following a repeated and intermittent paradoxical sleep deprivation procedure. Behav Brain Res. 2017;321:69–78. https://doi.org/10.1016/j.bbr.2016.12.034.

    Article  PubMed  Google Scholar 

  223. Biswas S, Mishra P, Mallick BN. Increased apoptosis in rat brain after rapid eye movement sleep loss. Neuroscience. 2006;142(2):315–31. https://doi.org/10.1016/j.neuroscience.2006.06.026.

    Article  CAS  PubMed  Google Scholar 

  224. Somarajan BI, Khanday MA, Mallick BN. Rapid eye movement sleep deprivation induces neuronal apoptosis by noradrenaline acting on Alpha1 adrenoceptor and by triggering mitochondrial intrinsic pathway. Front Neurol. 2016;7:25. https://doi.org/10.3389/fneur.2016.00025.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Dos Santos AC, Castro MA, Jose EA, Delattre AM, Dombrowski PA, Da Cunha C, et al. REM sleep deprivation generates cognitive and neurochemical disruptions in the intranigral rotenone model of Parkinson's disease. J Neurosci Res. 2013;91(11):1508–16. https://doi.org/10.1002/jnr.23258.

    Article  CAS  PubMed  Google Scholar 

  226. Santos PD, Targa ADS, Noseda ACD, Rodrigues LS, Fagotti J, Lima MMS. Cholinergic oculomotor nucleus activity is induced by REM sleep deprivation negatively impacting on cognition. Mol Neurobiol. 2017;54(7):5721–9. https://doi.org/10.1007/s12035-016-0112-z.

    Article  CAS  PubMed  Google Scholar 

  227. Hanlon EC, Andrzejewski ME, Harder BK, Kelley AE, Benca RM. The effect of REM sleep deprivation on motivation for food reward. Behav Brain Res. 2005;163(1):58–69. https://doi.org/10.1016/j.bbr.2005.04.017.

    Article  PubMed  Google Scholar 

  228. Hanlon EC, Benca RM, Baldo BA, Kelley AE. REM sleep deprivation produces a motivational deficit for food reward that is reversed by intra-accumbens amphetamine in rats. Brain Res Bull. 2010;83(5):245–54. https://doi.org/10.1016/j.brainresbull.2010.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Javad-Moosavi BZ, Vaezi G, Nasehi M, Haeri-Rouhani SA, Zarrindast MR. Critical role of CA1 muscarinic receptors on memory acquisition deficit induced by total (TSD) and REM sleep deprivation (RSD). Prog Neuropsychopharmacol Biol Psychiatry. 2017;79(Pt B):128–35. https://doi.org/10.1016/j.pnpbp.2017.05.024.

    Article  CAS  PubMed  Google Scholar 

  230. Rosales-Lagarde A, Armony JL, Del Rio-Portilla Y, Trejo-Martinez D, Conde R, Corsi-Cabrera M. Enhanced emotional reactivity after selective REM sleep deprivation in humans: an fMRI study. Front Behav Neurosci. 2012;6:25. https://doi.org/10.3389/fnbeh.2012.00025.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Vogel GW, Thurmond A, Gibbons P, Sloan K, Walker M. REM sleep reduction effects on depression syndromes. Arch Gen Psychiatry. 1975;32(6):765–77. https://doi.org/10.1001/archpsyc.1975.01760240093007.

    Article  CAS  PubMed  Google Scholar 

  232. Hensler JG, Artigas F, Bortolozzi A, Daws LC, De Deurwaerdere P, Milan L, et al. Catecholamine/serotonin interactions: systems thinking for brain function and disease. Adv Pharmacol. 2013;68:167–97. https://doi.org/10.1016/B978-0-12-411512-5.00009-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010;13(10):1161–9. https://doi.org/10.1038/nn.2647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Bhardwaj SK, Tse YC, Ryan R, Wong TP, Srivastava LK. Impaired adrenergic-mediated plasticity of prefrontal cortical glutamate synapses in rats with developmental disruption of the ventral hippocampus. Neuropsychopharmacology. 2014;39(13):2963–73. https://doi.org/10.1038/npp.2014.142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Acheson DT, Geyer MA, Baker DG, Nievergelt CM, Yurgil K, Risbrough VB, et al. Conditioned fear and extinction learning performance and its association with psychiatric symptoms in active duty marines. Psychoneuroendocrinology. 2015;51:495–505. https://doi.org/10.1016/j.psyneuen.2014.09.030.

    Article  CAS  PubMed  Google Scholar 

  236. Andreasen NC, Grove WM. Evaluation of positive and negative symptoms in schizophrenia. Psychiatr Psychobiol. 1986;1(2):108–21.

    Article  Google Scholar 

  237. Liddle PF. The symptoms of chronic schizophrenia. A re-examination of the positive-negative dichotomy. Br J Psychiatry. 1987;151:145–51. https://doi.org/10.1192/bjp.151.2.145.

    Article  CAS  PubMed  Google Scholar 

  238. Strauss ME. Relations of symptoms to cognitive deficits in schizophrenia. Schizophr Bull. 1993;19(2):215–31. https://doi.org/10.1093/schbul/19.2.215.

    Article  CAS  PubMed  Google Scholar 

  239. Nakazawa K, Zsiros V, Jiang Z, Nakao K, Kolata S, Zhang S, et al. GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology. 2012;62(3):1574–83. https://doi.org/10.1016/j.neuropharm.2011.01.022.

    Article  CAS  PubMed  Google Scholar 

  240. McNally JM, McCarley RW, Brown RE. Impaired GABAergic neurotransmission in schizophrenia underlies impairments in cortical gamma band oscillations. Curr Psychiatry Rep. 2013;15(3):346. https://doi.org/10.1007/s11920-012-0346-z.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Blum BP, Mann JJ. The GABAergic system in schizophrenia. Int J Neuropsychopharmacol. 2002;5(2):159–79. https://doi.org/10.1017/S1461145702002894.

    Article  CAS  PubMed  Google Scholar 

  242. Scarr E, Gibbons AS, Neo J, Udawela M, Dean B. Cholinergic connectivity: it’s implications for psychiatric disorders. Front Cell Neurosci. 2013;7:55. https://doi.org/10.3389/fncel.2013.00055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry. 2000;57(11):1061–9. https://doi.org/10.1001/archpsyc.57.11.1061.

    Article  CAS  PubMed  Google Scholar 

  244. Akbarian S, Huang HS. Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res Rev. 2006;52(2):293–304. https://doi.org/10.1016/j.brainresrev.2006.04.001.

    Article  CAS  PubMed  Google Scholar 

  245. Cohrs S. Sleep disturbances in patients with schizophrenia : impact and effect of antipsychotics. CNS Drugs. 2008;22(11):939–62. https://doi.org/10.2165/00023210-200822110-00004.

    Article  CAS  PubMed  Google Scholar 

  246. Monti JM, Monti D. Sleep in schizophrenia patients and the effects of antipsychotic drugs. Sleep Med Rev. 2004;8(2):133–48. https://doi.org/10.1016/S1087-0792(02)00158-2.

    Article  PubMed  Google Scholar 

  247. Kaskie RE, Graziano B, Ferrarelli F. Schizophrenia and sleep disorders: links, risks, and management challenges. Nat Sci Sleep. 2017;9:227–39. https://doi.org/10.2147/NSS.S121076.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Das M, Das R, Khastgir U, Goswami U. REM sleep latency and neurocognitive dysfunction in schizophrenia. Indian J Psychiatry. 2005;47(3):133–8. https://doi.org/10.4103/0019-5545.55934.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Mannaa M, Walker L. Is schizophrenia a REM disorder? Acad J Ped Neonatol. 2017;4(2):1–2.

    Google Scholar 

  250. Cle M, Maranci JB, Weyn Banningh S, Lanfranchi J, Vidailhet M, Arnulf I. Smiling asleep: a study of happy emotional expressions during adult sleep. J Sleep Res. 2019;28(4):e12814. https://doi.org/10.1111/jsr.12814.

    Article  PubMed  Google Scholar 

  251. Reeve S, Sheaves B, Freeman D. The role of sleep dysfunction in the occurrence of delusions and hallucinations: a systematic review. Clin Psychol Rev. 2015;42:96–115. https://doi.org/10.1016/j.cpr.2015.09.001.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Waters F, Blom JD, Dang-Vu TT, Cheyne AJ, Alderson-Day B, Woodruff P, et al. What is the link between hallucinations, dreams, and hypnagogic-hypnopompic experiences? Schizophr Bull. 2016;42(5):1098–109. https://doi.org/10.1093/schbul/sbw076.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Khanday MA, Somarajan BI, Mehta R, Mallick BN. Noradrenaline from locus coeruleus neurons acts on pedunculo-pontine neurons to prevent REM sleep and induces its loss-associated effects in rats. eNeuro. 2016;3(6). https://doi.org/10.1523/ENEURO.0108-16.2016.

  254. Myllymaki T, Kyrolainen H, Savolainen K, Hokka L, Jakonen R, Juuti T, et al. Effects of vigorous late-night exercise on sleep quality and cardiac autonomic activity. J Sleep Res. 2011;20(1 Pt 2):146–53. https://doi.org/10.1111/j.1365-2869.2010.00874.x.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research support to BNM was received from Indian funding agencies viz. J. C. Bose fellowship, Department of Science and Technology (DST), Department of Biotechnology (DBT), and University Grants Commission (UGC) and Institutional Umbrella support over the years under the schemes DBT-BUILDER, DST-Improvement of Science and Technology Infrastructure (FIST) and Promotion of University Research and Scientific Excellence (PURSE), UGC-University with Potential for Excellence in Focus Area (UPEII), Departmental Research Support (DRS) and Networking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birendra N. Mallick.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, R., Giri, S. & Mallick, B.N. REM sleep loss–induced elevated noradrenaline could predispose an individual to psychosomatic disorders: a review focused on proposal for prediction, prevention, and personalized treatment. EPMA Journal 11, 529–549 (2020). https://doi.org/10.1007/s13167-020-00222-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13167-020-00222-1

Keywords

Navigation