Skip to main content
Log in

Embryonic exposure to decitabine induces multiple neural tube defects in developing zebrafish

  • Research
  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Neural tube defects are severe congenital disorders of the central nervous system that originate during embryonic development when the neural tube fails to close completely. It affects one to two infants per 1000 births. The aetiology is multifactorial with contributions from both genetic and environmental factors. Dysregulated epigenetic mechanisms, in particular the abnormal genome-wide methylation during embryogenesis, have been linked to developmental abnormalities including neural tube defects. The current study investigated the influence of decitabine (DCT), a DNA methylation inhibitor, on embryonic development in zebrafish, with a focus on neural tube formation. The developing zebrafish embryos were exposed to graded concentrations of decitabine (from 13.69 μM to 1 mM) before the onset of neurulation. The developmental process was monitored at regular time intervals post fertilization. At 120 h post fertilization, the developing embryos were inspected individually to determine the incidence and severity of neural tube defects. Using alizarin red staining, the cranial and caudal neural tube morphology was examined in formaldehyde fixed larvae. Anomalies in neural tube and somite development, as well as a delay in hatching, were discovered at an early stage of development. As development continued, neural tube defects became increasingly evident, and there was a concentration-dependent rise in the prevalence and severity of various neural tube defects. 90% of growing embryos in the group exposed to decitabine 1 mM had multiple neural tube malformations, and 10% had isolated neural tube defects. With several abnormalities, the caudal region of the neural tube was seriously compromised. The histopathological studies supported the malformations in neural tube. Our study revealed the harmful impact of decitabine on the development of the neural tube in growing zebrafish. Moreover, these findings support the hypothesis that the hypomethylation during embryonic development causes neural tube defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code availability

Not applicable

References

  • Afman LA, Blom HJ, Drittij MJ, Brouns MR, van Straaten HWM (2005) Inhibition of transmethylation disturbs neurulation in chick embryos. Brain Res Dev Brain Res 158(1-2):59–65

    Article  PubMed  CAS  Google Scholar 

  • Bai B, Zhang Q, Liu X, Miao C, Shangguan S, Bao Y, Guo J, Wang L, Zhang T, Li H (2014) Different epigenetic alterations are associated with abnormal IGF2/Igf2 upregulation in neural tube defects. PLoS One 9(11):e113308

    Article  PubMed  PubMed Central  Google Scholar 

  • Blader P, Strahle U (2000) Zebrafish developmental genetics and central nervous system development. Hum Mol Genet 9(6):945–951

  • Breton-Larrivee M, Elizabeth Elder E, McGraw S (2019) DNA methylation, environmental exposures and early embryo development. Anim Reprod 16(3):465–474

    Article  PubMed  PubMed Central  Google Scholar 

  • Briggs GG, Freeman RK, Yaffe SJ (2008) Drugs in pregnancy and lactation: a reference guide to fetal and neonatal risk. Eighth edition, Lippincott Williams & Wilkins: 484.

  • Carvan MJ 3rd, Loucks E, Weber DN, Williams FE (2004) Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicol Teratol 26(6):757–768

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Guo J, Lei Y, Zou J, Lu X, Bao Y, Wu L, Wu J, Zheng X, Shen Y, Wu BL, Zhang T (2010) Global DNA hypomethylation is associated with NTD-affected pregnancy: a case-control study. Birth Defects Res A Clin Mol Teratol 88(7):575–581

    Article  PubMed  CAS  Google Scholar 

  • Copp AJ, Greene ND (2010) Genetics and development of neural tube defects. J Pathol 220(2):217–230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Copp AJ, Greene NDE, Murdoch JN (2003) The genetic basis of mammalian neurulation. Nat Rev Genet 4(10):784–793

  • Dawid IB (2004) Developmental biology of zebrafish. Ann N Y Acad Sci 1038:88–93

    Article  PubMed  Google Scholar 

  • Dhar GA, Saha S, Mitra P, Chaudhuri RN (2021) DNA methylation and regulation of gene expression: guardian of our health. Nucleus (Calcutta) 64(3):259–270

    Article  PubMed  CAS  Google Scholar 

  • Dunlevy LPE, Burren KA, Chitty LS, Copp AJ, Greene NDE (2006) Excess methionine suppresses the methylation cycle and inhibits neural tube closure in mouse embryos. FEBS Lett 580(11):2803–2807

    Article  PubMed  CAS  Google Scholar 

  • Ellen JBD, Jos HB, Jan HMS (2013) Concise drug review: azacitidine and decitabine. Oncologist 18:619–624

    Article  Google Scholar 

  • Esteller M (2005) Aberrant DNA methylation as a cancer inducing mechanism. Annu Rev Pharmacol Toxicol 45:629–656

    Article  PubMed  CAS  Google Scholar 

  • Friso S, Choi SW, Girelli D, Mason JB, Dolnikowski GG, Bagley PJ, Olivieri O, Jacques PF, Rosenberg IH, Corrocher R, Selhub J (2002) A common mutation in the 5, 10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA 99(8):5606–5611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gnyszka A, Jastrzębski Z, Flis S (2013) DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res 33:2989–2996

    PubMed  CAS  Google Scholar 

  • Goldman D, Hankin M, Li Z, Dai X, Ding J (2001) Transgenic zebrafish for studying nervous system development and regeneration. Transgenic Res 10(1):21–33

    Article  PubMed  CAS  Google Scholar 

  • Greene ND, Copp AJ (2014) Neural tube defects. Annu Rev Neurosci 37:221–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greene NDE, Stainer P, Moore GE (2011) The emerging role of epigenetic mechanisms in the etiology of neural tube defects. Epigenetics 6(7):875–883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo S (2009) Using zebrafish to assess the impact of drugs on neural development and function. Expert Opin Drug Discovery 4(7):715–726

    Article  CAS  Google Scholar 

  • Haldar S, Karmaka I, Chakraborty M, Das A, Haldar PK (2015) Preclinical assessment of Cascabela thevetia fruits on developmental toxicity and behavioral safety in zebrafish embryos. Orient Pharm Exp Med 15:371–377

    Article  Google Scholar 

  • Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Howell PM, Liu Z, Khong HT (2010) Demethylating agents in the treatment of cancer. Pharmaceuticals (Basel) 3(7):2022–2044

    Article  PubMed  CAS  Google Scholar 

  • Irwin RE, Pentieva K, Cassidy T, Lees-Murdock DJ, McLaughlin M, Prasad G, McNulty H, Walsh CP (2016) The interplay between DNA methylation, folate and neurocognitive development. Epigenomics 8(6):863–879

    Article  PubMed  CAS  Google Scholar 

  • Jackson-Grusby L, Laird PW, Magge SN, Moeller BJ, Jaenisch R (1997) Mutagenicity of 5-aza-2'-deoxycytidine is mediated by the mammalian DNA methyltransferase. Proc Natl Acad Sci USA 94(9):4681–4685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Javidan Y, Schilling TF (2004) Development of cartilage and bone. Methods Cell Biol 76:415–436

    Article  PubMed  Google Scholar 

  • Jin B, Li Y, Robertson KD (2011) DNA methylation. Genes Cancer 2(6):607–617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  PubMed  CAS  Google Scholar 

  • Juttermann R, Li E, Jaenisch R (1994) Toxicity of 5-aza-2'-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci USA 91(25):11797–11801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawamura K, Hosoya K (1991) A modified double staining technique for making a transparent fish-skeletal specimen. Bull Natl Res Inst Aquac 20:11–18

    Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310

    Article  PubMed  CAS  Google Scholar 

  • Kozol RA, Abrams AJ, James DM, Buglo E, Yan Q, Dallman JE (2016) Function over form: modeling groups of inherited neurological conditions in zebrafish. Front Mol Neurosci 9:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee BS, Sathar J, Ong TC (2020) Teratogenic effect of decitabine in a pregnant patient with acute myeloid leukemia: a case report. Hematol Transfus Cell Ther S2531-1379(20):31306–31307

    Google Scholar 

  • Lee J, Freeman JL (2014) Zebrafish as a model for developmental neurotoxicity assessment: the application of the zebrafish in defining the effects of arsenic, methylmercury, or lead on early neurodevelopment. Toxics 2(3):464–495

    Article  Google Scholar 

  • Leone G, Teofili L, Voso MT, Lubbert M (2002) DNA methylation and demethylating drugs in myelodysplastic syndromes and secondary leukemias. Haematologica 87(12):1324–1341

    PubMed  CAS  Google Scholar 

  • Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Sheng N, Zhang W, Dai J (2015) Toxic effects of perfluorononanoic acid on the development of Zebrafish (Danio rerio) embryos. J Environ Sci 32:26–34

    Article  Google Scholar 

  • Liu Z, Wang Z, Li Y, Ouyang S, Chang H, Zhang T, Zheng X, Wu J (2012) Association of genomic instability, and the methylation status of imprinted genes and mismatch-repair genes, with neural tube defects. Eur J Hum Genet 20(5):516–520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsuda M (1990) Comparison of the incidence of 5-azacytidine-induced exencephaly between MT/HokIdr and Slc:ICR mice. Teratology 41:147–154

    Article  PubMed  CAS  Google Scholar 

  • McGregor F, Muntoni A, Fleming J, Brown J, Felix DH, MacDonald DG, Parkinson EK, Harrison PR (2002) Molecular changes associated with oral dysplasia progression and acquisition of immortality: potential for its reversal by 5-azacytidine. Cancer Res 62(16):4757–4766

    PubMed  CAS  Google Scholar 

  • Menke AL, Spitsbergen JM, Wolterbeek APM, Wouterson RA (2011) Normal anatomy and histology of the adult zebrafish. Toxicol Pathol 39(5):759–775

    Article  PubMed  Google Scholar 

  • Muhr J, Ackerman KM (2022) Embryology, gastrulation. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  • Mund C, Hackanson B, Stresemann C, Lubbert M, Lyko F (2005) Characterization of DNA demethylation effects induced by 5-Aza-2'-deoxycytidine in patients with myelodysplastic syndrome. Cancer Res 65(16):7086–7090

    Article  PubMed  CAS  Google Scholar 

  • Nakajima R, Hagihara H, Miyakawa T (2021) Similarities of developmental gene expression changes in the brain between human and experimental animals: rhesus monkey, mouse, zebrafish, and drosophila. Mol Brain 14:135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nikolopoulou E, Galea GL, Rolo A, Greene NDE, Copp AJ (2017) Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 144(4):552–566

    Article  PubMed  CAS  Google Scholar 

  • OECD (2013) Test No. 236: Fish embryo acute toxicity (FET) test. OECD Guidelines for the Testing of Chemicals

    Book  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases DNMT3a and DNMT3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    Article  PubMed  CAS  Google Scholar 

  • Padmanabhan R, Naruse I, Shiota K (1999) Caudal dysgenesis in staged human embryos: Carnegie stages. Am J Med Genet 87(2):115–127

    Article  PubMed  CAS  Google Scholar 

  • Panning B (2008) X-chromosome inactivation: the molecular basis of silencing. J Biol 7:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Papan C, Campos-Ortega JA (1994) On the formation of the neural keel and neural tube in the zebrafish Danio (Brachydanio) rerio. Roux’s Arch Dev Biol 203(4):178–186

    Article  Google Scholar 

  • Powers CM, Yen J, Linney EA, Seidler FJ, Slotkin TA (2010) Silver exposure in developing zebrafish (Danio rerio): persistent effects on larval behavior and survival. Neurotoxicol Teratol 32(3):391–397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pytel A, Bruska M, Wozniak W (2007) Evidence that the caudal portion of the neural tube develops by cavitation of a neural cord in the caudal eminence of human embryos. Folia Morphol (Warsz) 66(2):104–108

    PubMed  CAS  Google Scholar 

  • Rai K, Jafri IF, Chidester S, James SR, Karpf AR, Cairns BR, Jones DA (2010) Dnmt3 and G9a cooperate for tissue-specific development in zebrafish. J Biol Chem 285(6):4110–4121

    Article  PubMed  CAS  Google Scholar 

  • Rajesh V, Deepan N, Anitha V, Kalaiselvan D, Jayaseelan S, Sivakumar P, Ganesan V (2020) Heart malformation is an early response to valproic acid in developing zebrafish. Naunyn Schmiedeberg's Arch Pharmacol 393(12):2387–2409

    Article  CAS  Google Scholar 

  • Rayburn ER, Gao L, Ding J, Ding H, Shao J, Li H (2018) FDA-approved drugs that are spermatotoxic in animals and the utility of animal testing for human risk prediction. J Assist Reprod Genet 35(2):191–212

    Article  PubMed  Google Scholar 

  • Robertson KD, Wolffe AP (2000) DNA methylation in health and disease. Nat Rev Genet 1:11–19

    Article  PubMed  CAS  Google Scholar 

  • Rochtus A, Izzi B, Vangeel E, Louwette S, Wittevrongel C, Lambrechts D, Moreau Y, Winand R, Verpoorten C, Jansen K, Geet CV, Freson K (2015) DNA methylation analysis of Homeobox genes implicates HOXB7 hypomethylation as risk factor for neural tube defects. Epigenetics 10(1):92–101

    Article  PubMed  PubMed Central  Google Scholar 

  • Saba HI (2007) Decitabine in the treatment of myelodysplastic syndromes. Ther Clin Risk Manag 3(5):807–817

    PubMed  PubMed Central  CAS  Google Scholar 

  • Samaee SM, Rabbani S, Jovanovic B, Mohajeri-Tehrani MR, Haghpanah V (2015) Efficacy of the hatching event in assessing the embryo toxicity of the nano-sized TiO2 particles in zebrafish: a comparison between two different classes of hatching-derived variables. Ecotoxicol Environ Saf 116:121–128

    Article  PubMed  CAS  Google Scholar 

  • Santoriello C, Zon LI (2012) Hooked! Modeling human disease in zebrafish. J Clin Invest 122(7):2337–2343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt R, Strähle U, Scholpp S (2013) Neurogenesis in zebrafish – from embryo to adult. Neural Dev 8:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Shangguan S, Wang L, Chang S, Lu X, Wang Z, Wu L, Wang J, Wang X, Guan Z, Bao Y, Zhao H, Zou J, Niu B, Zhang T (2015) DNA methylation aberrations rather than polymorphisms of FZD3 gene increase the risk of spina bifida in a high-risk region for neural tube defects. Birth Defects Res A Clin Mol Teratol 103(1):37–44

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Munakomi S (2023) In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  • Smha P, Kanamadi RD (2000) Effect of mercurial fungicide Emisan-6 on the embryonic developmental stages of zebrafish. Brachydanio (Danio) rerio J Adv Zool 21(1):12–18

    Google Scholar 

  • Takebayashi S, Tamura T, Matsuoka C, Okano M (2007) Major and essential role for the DNA methylation mark in mouse embryogenesis and stable association of DNMT1 with newly replicated regions. Mol Cell Biol 27(23):8243–8258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian T, Wang L, Shen Y, Zhang B, Finnell RH, Ren A (2018) Hypomethylation of GRHL3 gene is associated with the occurrence of neural tube defects. Epigenomics 10(7):891–901

  • van der Linden IJM, Heil SG, van Egmont PM, van Straaten HW, den Heijer M, Blom HJ (2008) Inhibition of methylation and changes in gene expression in relation to neural tube defects. Birth Defects Res A Clin Mol Teratol 82:676–683

    Article  PubMed  Google Scholar 

  • Wang L, Wang F, Guan J, Le J, Wu L, Zou J, Zhao H, Pei L, Zheng X, Zhang T (2010) Relation between hypomethylation of long interspersed nucleotide elements and risk of neural tube defects. Am J Clin Nutr 91(5):1359–1367

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Han ZJ, Song G, Cui Y, Xia HF, Ma X (2021) Homocysteine-induced neural tube defects in chick embryos via oxidative stress and DNA methylation associated transcriptional down-regulation of miR-124. Toxicol Res (Camb) 10(3):425–435

    Article  PubMed  Google Scholar 

  • Wu L, Wang L, Shangguan S, Chang S, Wang Z, Lu X, Zhang Q, Wang J, Zhao H, Wang F, Guo J, Niu B, Guo J, Zhang T (2013) Altered methylation of IGF2 DMR0 is associated with neural tube defects. Mol Cell Biochem 380(1-2):33–42

    Article  PubMed  CAS  Google Scholar 

  • Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4:35–44

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the management “The Erode College of Pharmacy and Research Institute”, Erode, Tamil Nadu, India affiliated to Tamil Nadu Dr. M.G.R. Medical University for providing necessary facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Contributions

The experimental study was designed, performed and analyzed by VR and PKD. VR wrote the manuscript and revised the manuscript. PKD approved the final version of the manuscript.

Corresponding author

Correspondence to Venugopalan Rajesh.

Ethics declarations

Ethical approval

This study was approved by Institutional Animal Ethics Committee (Proposal No. ECP-IAEC-007-2021-2022) under the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA, New Delhi, India).

Consent to participate

All authors gave their consent to participate.

Consent for publication

All authors gave their consent to publish this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 18 kb)

ESM 2

(DOCX 8904 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajesh, V., Divya, P.K. Embryonic exposure to decitabine induces multiple neural tube defects in developing zebrafish. Fish Physiol Biochem 49, 1357–1379 (2023). https://doi.org/10.1007/s10695-023-01261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-023-01261-x

Keywords

Navigation