Skip to main content
Log in

Heart malformation is an early response to valproic acid in developing zebrafish

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Valproic acid (VPA) is a branched short-chain fatty acid primarily used in epilepsy, but is also used in bipolar disorder, migraine, and psychotic disorders. Despite its wide range of use, it is a teratogen resulting in various congenital abnormalities. Although a large number of scientific studies evidenced the teratogenic effects, there are limited data on embryonic exposure to VPA at specific or different stages of early embryogenesis. Based on this, the present study was planned to investigate the embryonic exposure to VPA at specific and different hours post fertilization (hpf) in zebrafish embryonic model. In first set of experiments, embryos from spawning groups of adult zebrafish were exposed to different molar concentrations of VPA at 2.5 hpf, and in the second set of experiments, embryos were exposed to VPA 100 μM at 24 hpf, 36 hpf, 48 hpf, 72 hpf, and 96 hpf. The parameters examined were hatching rate, mortality, morphology, body length, pericardial sac size, heartrate, anatomical changes in heart, skeletal and notochord till 120 hpf. It was observed that the embryos exposed to VPA at 2.5 hpf suffered from cardiac abnormalities including heart malformation, bradycardia, circulatory failure, and pericardial sac enlargement which was more apparent in embryos exposed to 100 μM VPA. In the second set of experiments, embryos exposed to VPA 100 μM at 24 hpf and 36 hpf suffered from heart malformations, but there was no incidence of cardiac malformation in embryos exposed to VPA at 48 hpf, 72 hpf, and 96 hpf. From the results, it was evident that exposure to VPA at early developmental stage of embryogenesis produced congenital cardiac abnormalities. Since VPA is a selective HDAC inhibitor, histone acetylation with aberrant gene expression during cardiogenesis might be the underlying cause of cardiac malformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Alexander J, Stainier DYR (1999) Mutations affecting cardiac development in zebrafish. In: Harvey RP, Rosenthal N (eds) Heart Development. Academic, San Diego, pp 91–110

    Google Scholar 

  • Arnsdorf EJ, Tummala P, Castillo AB, Zhang F, Jacobs CR (2010) The epigenetic mechanism of mechanically induced osteogenic differentiation. J Biomech 43(15):2881–2886

    PubMed  PubMed Central  Google Scholar 

  • Bakkers J (2011) Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91(2):279–288

  • Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, Bedell JA, McPherson JD, Johnson SL (2000) The syntenic relationship of the zebrafish and human genomes. Genome Res 10(9):1351–1358

    PubMed  PubMed Central  CAS  Google Scholar 

  • Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, Grayzel D, Kroumpouzou E, Traill TA, Leblanc-Straceski J, Renault B, Kucherlapati R, Seidman JG, Seidman CE (1997) Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 15(1):30–35

    PubMed  CAS  Google Scholar 

  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23(7):781–783

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5(9):769–784

    PubMed  CAS  Google Scholar 

  • Chen J (2013) Impaired cardiovascular function caused by different stressors elicits a common pathological and transcriptional response in zebrafish embryos. Zebrafish 10(3):389–400

    PubMed  PubMed Central  CAS  Google Scholar 

  • DiLiberti JH, Farndon PA, Dennis NR, Curry CJ (1984) The fetal valproate syndrome. Am J Med Genet 19(3):473–481

    PubMed  CAS  Google Scholar 

  • Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5(10):981–989

    PubMed  CAS  Google Scholar 

  • Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338(1):17–31

    PubMed  CAS  Google Scholar 

  • Guiney PD, Walker MK, Spitsbergen JM, Peterson RE (2000) Hemodynamic dysfunction and cytochrome P4501A mRNA expression induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin during embryonic stages of lake trout development. Toxicol Appl Pharmacol 168(1):1–14

    PubMed  CAS  Google Scholar 

  • Haldar S, Karmaka I, Chakraborty M, Das A, Haldar PK (2015) Preclinical assessment of Cascabela thevetia fruits on developmental toxicity and behavioral safety in zebrafish embryos. Orient Pharm Exp Med 15(4):371–377

    Google Scholar 

  • Hill AJ, Bello SM, Prasch AL, Peterson RE, Heideman W (2004) Water permeability and TCDD-induced edema in zebrafish early-life stages. Toxicol Sci 78(1):78–87

    PubMed  CAS  Google Scholar 

  • Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a Model Vertebrate for Investigating Chemical Toxicity. Toxicol Sci 86(1):6–19

  • Horb ME, Thomsen GH (1999) Tbx5 is essential for heart development. Development 126(8):1739–1751

    PubMed  CAS  Google Scholar 

  • Huang J, Schriefer AE, Yang W, Cliften PF, Rudnick DA (2014) Identification of an epigenetic signature of early mouse liver regeneration that is disrupted by Zn-HDAC inhibition. Epigenetics 9(11):1521–1531

    PubMed  PubMed Central  Google Scholar 

  • Incardona JP, Collier TK, Scholz NL (2004) Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol 196(2):191–205

    PubMed  CAS  Google Scholar 

  • Javidan Y, Schilling TF (2004) Development of cartilage and bone. Methods Cell Biol 76:415–436

    PubMed  Google Scholar 

  • Kawamura K, Hosoya K (1991) A modified double staining technique for making a transparent fish-skeletal specimen. Bull Natl Res Inst Aquac 20:11–18

    Google Scholar 

  • Ke Q, Yang RN, Ye F, Wang YJ, Wu Q, Li L, Bu H (2012) Impairment of liver regeneration by the histone deacetylase inhibitor VPA in mice. J Zhejiang Univ Sci B (Biomed & Biotechnol) 13(9):695–706

    CAS  Google Scholar 

  • Kohli S, Ahuja S, Rani V (2011) Transcription factors in heart: promising therapeutic targets in cardiac hypertrophy. Curr Cardiol Rev 7(4):262–271

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    PubMed  CAS  Google Scholar 

  • Li QY, Newbury-Ecob RA, Terrett JA, Wilson DI, Curtis AR, Yi GH, Gebuhr T, Bullen PJ, Robson SC, Strachan T, Bonnet D, Lyonnet S, Young ID, Raeburn JA, Buckler AJ, Law DJ, Brook JD (1997) Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet 15:21–29

    PubMed  Google Scholar 

  • Liberatore CM, Searcy-Schrick RD, Yutzey KE (2000) Ventricular expression of tbx5 inhibits normal heart chamber development. Dev Biol 223:169–180

    PubMed  CAS  Google Scholar 

  • Lin Q, Schwarz J, Bucana C, Olson EN (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276(5317):1404–1407

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu H, Sheng N, Zhang W, Dai J (2015) Toxic effects of perfluorononanoic acid on the development of Zebrafish (Danio rerio) embryos. J Environ Sci 32:26–34

    Google Scholar 

  • Lu F, Langenbacher AD, Chen JN (2016) Transcriptional regulation of heart development in zebrafish. J Cardiovasc Dev Dis 3(2):14

    PubMed  PubMed Central  Google Scholar 

  • Marmorstein R, Roth SY (2001) Histone acetyltransferases: function, structure, and catalysis. Curr Opin Genet Dev 11(2):155–161

    PubMed  CAS  Google Scholar 

  • Marson CM (2009) Histone deacetylase inhibitors: design, structure-activity relationships and therapeutic implications for cancer. Anti Cancer Agents Med Chem 9(6):661–692

    CAS  Google Scholar 

  • Oliveira R, Domingues I, Grisolia CK, Soares AM (2009) Effects of Triclosan on zebrafish early-life stages and adults. Environ Sci Pollut Res 16(6):679–688

    CAS  Google Scholar 

  • Papait R, Monti E, Bonapace IM (2009) Novel approaches on epigenetics. Curr Opin Drug Discov Devel 12(2):264–275

    PubMed  CAS  Google Scholar 

  • Powers CM, Yen J, Linney EA, Seidler FJ, Slotkin TA (2010) Silver exposure in developing zebrafish (Danio rerio): persistent effects on larval behavior and survival. Neurotoxicol Teratol 32(3):391–397

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sambucetti LC, Fischer DD, Zabludoff S, Kwon PO, Chamberlin H, Trogani N, Xu H, Cohen D (1999) Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J Biol Chem 274(49):34940–34947

    PubMed  CAS  Google Scholar 

  • Sakata Y, Kamei CN, Nakagami H, Bronson R, Liao JK, Chin MT (2002) Ventricular septal defect and cardiomyopathy in mice lacking the transcription factor CHF1/Hey2. Proc Natl Acad Sci U S A 99(25):16197–16202

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sakata Y, Koibuchi N, Xiang F, Youngblood JM, Kamei CN, Chin MT (2006) The spectrum of cardiovascular anomalies in CHF1/Hey2 deficient mice reveals roles in endocardial cushion, myocardial and vascular maturation. J Mol Cell Cardiol 40(2):267–273

    PubMed  CAS  Google Scholar 

  • Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    PubMed  CAS  Google Scholar 

  • Smith J (1999) T-box genes: what they do and how they do it. Trends Genet 15:154–158

    PubMed  CAS  Google Scholar 

  • Stainier DY (2001) Zebrafish genetics and vertebrate heart formation. Nat Rev Genet 2(1):39–48

    PubMed  CAS  Google Scholar 

  • Struhl K (1995) Yeast transcriptional regulatory mechanisms. Annu Rev Genet 29:651–674

    PubMed  CAS  Google Scholar 

  • van Oort RJ, van Rooij E, Bourajjaj M, Schimmel J, Jansen MA, Vander NR, Doevendans PA, Schneider MD, van Echteld CJA, De Windt LJ (2006) MEF2 activates a genetic program promoting chamber dilation and contractile dysfunction in calcineurin-induced heart failure. Circulation 114(4):298–308

    PubMed  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Francesco VD, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang ZY, Wang A, Wang X, Wang J, Wei MH, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu SC, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigó R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays AD, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X (2001) The sequence of the human genome. Science 291(5507):1304–1351

    PubMed  CAS  Google Scholar 

  • Westerfield M (2000) The zebrafish book. A guide for the laboratory use of Zebrafish (Danio rerio), 4th edn. University of Oregon Press, Eugene

    Google Scholar 

  • Wu G, Nan C, Rollo JC, Huang X, Tian J (2010) Sodium valproate-induced congenital cardiac abnormalities in mice are associated with the inhibition of histone deacetylase. J Biomed Sci 17(1):16

    PubMed  PubMed Central  Google Scholar 

  • Yanazume T, Hasegawa K, Morimoto T, Kawamura T, Wada H, Matsumori A, Kawase Y, Hirai M, Kita T (2003) Cardiac p300 is involved in myocyte growth with decompensated heart failure. Mol Cell Biol 23(10):3593–3606

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yelon D, Horne SA, Stainier DY (1999) Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. Dev Biol 214(1):23–37

    PubMed  CAS  Google Scholar 

  • Zhu JJ, Xu YQ, He JH, Yu HP, Huang CJ, Gao JM, Dong QX, Xuan YX, Li CQ (2014) Human cardiotoxic drugs delivered by soaking and microinjection induce cardiovascular toxicity in zebrafish. J Appl Toxicol 34(2):139–148

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the management of the Erode College of Pharmacy and Research Institute, Erode, Tamil Nadu, India, for providing necessary facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Contributions

VR and ND designed the research. Experimental evaluation was performed by VR, ND, VA, and DK. VR analyzed the data and wrote the manuscript. SJ, PS, and VG revised the manuscript. All authors read and approved the final version of the manuscript. All data were generated in-house and no paper mill was used in this study.

Corresponding author

Correspondence to Venugopalan Rajesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

Early life periods of zebrafish are not protected as animals until the stage of being capable of self-feeding (5 days post fertilization). So, no specific permissions were required for the activities involved in this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(MP4 1718 kb).

ESM 2

(MP4 1044 kb).

ESM 3

(MP4 902 kb).

ESM 4

(MP4 1385 kb).

ESM 5

(MP4 1022 kb).

ESM 6

(MP4 558 kb).

ESM 7

(MP4 763 kb).

ESM 8

(MP4 781 kb).

ESM 9

(MP4 1931 kb).

ESM 10

(MP4 1184 kb).

ESM 11

(MP4 788 kb).

ESM 12

(MP4 742 kb).

ESM 13

(MP4 1314 kb).

ESM 14

(MP4 1658 kb).

ESM 15

(MP4 907 kb).

ESM 16

(MP4 1709 kb).

ESM 17

(MP4 1119 kb).

ESM 18

(MP4 1038 kb).

ESM 19

(MP4 1350 kb).

ESM 20

(MP4 1540 kb).

ESM 21

(MP4 1664 kb).

ESM 22

(MP4 1326 kb).

ESM 23

(MP4 1406 kb).

ESM 24

(MP4 1975 kb).

ESM 25

(MP4 1742 kb).

ESM 26

(MP4 1202 kb).

ESM 27

(MP4 1072 kb).

ESM 28

(MP4 1563 kb).

ESM 29

(MP4 1196 kb).

ESM 30

(MP4 1156 kb).

ESM 31

(DOCX 74107 kb).

ESM 32

(DOCX 77 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajesh, V., Deepan, N., Anitha, V. et al. Heart malformation is an early response to valproic acid in developing zebrafish. Naunyn-Schmiedeberg's Arch Pharmacol 393, 2387–2409 (2020). https://doi.org/10.1007/s00210-020-01949-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-020-01949-4

Keywords

Navigation