Skip to main content
Log in

Vitamin C inhibits lipid deposition through GSK-3β/mTOR signaling in the liver of zebrafish

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In this study, the mechanism that VC inhibits lipid deposition through GSK-3β/mTOR signaling was investigated in the liver of Danio rerio. The results indicated that 0.5- and 1.0-g/kg VC treatments activated mTOR signaling by inhibiting GSK-3β expression. The mRNA expression of FAS, ACC, and ACL, as well as the content of TG, TC, and NEFA, was decreased by 0.5- and 1.0-g/kg VC treatments. Moreover, to confirm GSK-3β playing a key role in regulating TSC2 and mTOR, GSK-3β RNA was interfered and the activity of GSK-3β was inhibited by 25- and 50-mg/L LiCl treatments, respectively. The results indicated that GSK-3β inactivation played a significant role in inducing mTOR signaling and inhibiting lipid deposition. VC treatments could induce mTOR signaling by inhibiting GSK-3β, and mTOR further participated in regulating lipid deposition by controlling lipid profile in the liver of zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACC:

acetyl-CoA carboxylase

ACL:

ATP-citrate lyase

FAS:

fatty acid synthase

GSK-3β:

glycogen synthase kinase-3β

HDL-C:

high density lipoprotein cholesterol

LDL-C:

low density lipoprotein cholesterol

mTOR:

mammalian target of rapamycin

NEFA:

nonesterified fatty acids

Rheb:

Ras homolog enriched in brain

TC:

Total cholesterol ratio

TG:

triglyceride

TSC2:

Tuberous sclerosis 2

VC:

vitamin C

VLDL:

very low density lipoprotein

References

  • Afkhami-Ardekani M, Shojaoddiny-Ardekani A (2007) Effect of vitamin C on blood glucose, serum lipids & serum insulin in type 2 diabetes patients. Indian J Med Res 126:471–474

    CAS  PubMed  Google Scholar 

  • Arockiaraj J, Palanisamy R, Bhatt P, Kumaresan V, Gnanam AJ, Pasupuleti M, Kasi M (2014) A novel murrel Channa striatus mitochondrial manganese superoxide dismutase: gene silencing, SOD activity, superoxide anion production and expression. Fish Physiol Biochem 40:1937–1955

    Article  CAS  Google Scholar 

  • Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin WG Jr (2003) TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4:147–158

    Article  CAS  Google Scholar 

  • Buller CL, Loberg RD, Fan MH, Zhu Q, Park JL, Vesely E, Inoki K, Guan KL, Brosius FC 3rd (2008) A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. Am J Phys Cell Phys 295:C836–C843

    Article  CAS  Google Scholar 

  • Chang YS, Tsai CT, Huangfu CA, Huang WY, Lei HY, Lin CF, Su IJ, Chang WT, Wu PH, Chen YT, Hung JH, Young KC, Lai MD (2011) ACSL3 and GSK-3β are essential for lipid upregulation induced by endoplasmic reticulum stress in liver cells. J Cell Biochem 112:881–893

    Article  CAS  Google Scholar 

  • Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multitasking kinase. J Cell Sci 116:1175–1186

    Article  CAS  Google Scholar 

  • Dubick MA, Hunter GC, Casey SM, Keen CL (1987) Aortic ascorbic acid, trace elements, and superoxide dismutase activity in human aneurysmal and occlusive disease. Proc Soc Exp Biol 184:138–143

    Article  CAS  Google Scholar 

  • Dugo L, Collin M, Thiemermann C (2007) Glycogen synthase kinase 3β as a target for the therapy of shock and inflammation. Shock 27:113–123

    Article  CAS  Google Scholar 

  • Eteng MU, Ibekwe HA, Amatey TE, Bassey BJ, Uboh FU, Owu DU (2006) Effect of vitamin C on serum lipids and electrolyte profile of albino Wistar rats. Niger J Physiol Sci 21:15–19

    CAS  PubMed  Google Scholar 

  • Fernandez ML (2001) Guinea pigs as models for cholesterol and lipoprotein metabolism. J Nutr 131:10–20

    Article  CAS  Google Scholar 

  • Frame S, Cohen P (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359:1–16

    Article  CAS  Google Scholar 

  • Fu ZQ, Yang Y, Song J, Jiang Q, Lin ZC, Wang Q, Zhu LQ, Wang JZ, Tian Q (2010) LiCl attenuates thapsigargin-induced tau hyperphosphorylation by inhibiting GSK-3β in vivo and in vitro. J Alzheimers Dis 21:1107–1117

    Article  CAS  Google Scholar 

  • Garcia-Diaz DF, Campion J, Milagro FI, Paternain L, Solomon A, Martinez JA (2009) Ascorbic acid oral treatment modifies lipolytic response and behavioural activity but not glucocorticoid metabolism in cafeteria diet fed rats. Acta Physiol 195:449–457

    Article  CAS  Google Scholar 

  • Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3β in cellular signaling. Prog Neurobiol 65:391–426

    Article  CAS  Google Scholar 

  • Han C, Wei S, He F, Liu D, Wan H, Liu H, Li L, Xu H, Du X, Xu F (2015) The regulation of lipid deposition by insulin in goose liver cells is mediated by the PI3K-AKT-mTOR signaling pathway. PLoS One 10:e0098759

    Article  Google Scholar 

  • Hao J, Zhu L, Li F, Liu Q, Zhao X, Liu S, Xing L, Feng X, Duan H (2013) Phospho-mTOR: a novel target in regulation of renal lipid metabolism abnormality of diabetes. Exp Cell Res 319:2296–2306

    Article  CAS  Google Scholar 

  • Hillstrom RJ, Yacapin-Ammons AK, Lynch SM (2003) Vitamin C inhibits lipid oxidation in human HDL. J Nutr 133:3047–3051

    Article  CAS  Google Scholar 

  • Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657

    Article  CAS  Google Scholar 

  • Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K, Wang CY, He X, MacDougald OA, You M, Williams BO, Guan KL (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126:955–968

    Article  CAS  Google Scholar 

  • Johnston CS (2005) Strategies for healthy weight loss: from vitamin C to the glycemic response. J Am Coll Nutr 24:158–165

    Article  CAS  Google Scholar 

  • Lamming DW, Sabatini DM (2013) A Central role for mTOR in lipid homeostasis. Cell Metab 18:465–469

    Article  CAS  Google Scholar 

  • Li Y, Corradetti MN, Inoki K, Guan KL (2004) TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem Sci 29:32–38

    Article  Google Scholar 

  • Liu W, Hao J, Zhu L, Li F, Liu Q, Liu S, Zhao S, Li H, Duan H (2013) Phospho-GSK-3β is involved in the high-glucose-mediated lipid deposition in renal tubular cells in diabetes. Int J Biochem Cell Biol 45:2066–2075

    Article  CAS  Google Scholar 

  • Liu D, Mai K, Zhang Y, Xu W, Ai Q (2016) GSK-3β participates in the regulation of hepatic lipid deposition in large yellow croaker (Larmichthys crocea). Fish Physiol Biochem 42:379–388

    Article  Google Scholar 

  • Liu D, Yu H, Gao L, Li A, Deng H, Zhang Z, Tao S, Liu Z, Yang Q, Pang Q (2018) The inhibition of GSK-3β promotes the production of reactive oxygen species via β-catenin/C/EBPα signaling in the spleen of zebrafish (Danio rerio). Fish Shellfish Immunol 76:110–120

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    CAS  Google Scholar 

  • Luo J (2009) Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy. Cancer Lett 273:194–200

    Article  CAS  Google Scholar 

  • Ma L, Chen Y, Song X, Wang L, Zhao B, Yang Z, Sheng H, Fei J, Chen E, Mao EQ (2016) Vitamin C attenuates hemorrhagic hypotension induced epithelial-dendritic cell transformation in rat intestines by maintaining GSK-3β activity and E-Cadherin expression. Shock 45:55–64

    Article  CAS  Google Scholar 

  • Robert JH, Angela K, Yacapin-Ammons AK, Lynch SM (2003) Vitamin C Inhibits Lipid Oxidation in Human HDL. J Nutr 133:3047–3051

    Article  Google Scholar 

  • Senen D, Adanali G, Ayhan M, Görgü M, Erdogan B (2002) Contribution of vitamin C administration for increasing lipolysis. Aesthet Plast Surg 26:123–125

    Article  Google Scholar 

  • Soliman GA (2011) The integral role of mTOR in lipid metabolism. Cell Cycle 10:861–862

    Article  CAS  Google Scholar 

  • Terstappen GC, Gaviraghi G, Caricasole A (2006) The Wnt signaling pathway as a target for the treatment of neurodegenerative disorders. IDrugs 9:35–38

    CAS  PubMed  Google Scholar 

  • Tian J, Wang K, Wang X, Wen H, Zhou H, Liu C, Mai K, He G (2018) Soybean saponin modulates nutrient sensing pathways and metabolism in zebrafish. Gen Comp Endocrinol 257:246–254

    Article  CAS  Google Scholar 

  • Vinson JA, Hu SJ, Jung S, Stanski AM (1998) A citrus extract plus ascorbic acid decreases lipids, lipid peroxides, lipoprotein oxidative susceptibility, and atherosclerosis in hypercholesterolemic hamsters. J Agric Food Chem 46:1453–1459

    Article  CAS  Google Scholar 

  • Wang W, He Q, Guo Z, Yang L, Bao L, Bao W, Zheng X, Wang Y, Wang Z (2015) Inhibition of mammalian target of rapamycin complex 1 (mTORC1) downregulates ELOVL1 gene expression and fatty acid synthesis in goat fetal fibroblasts. Int J Mol Sci 16:16440–16453

    Article  CAS  Google Scholar 

  • Yue T, Yin J, Li F, Li D, Du M (2010) High glucose induces differentiation and adipogenesis in porcine muscle satellite cells via mTOR. BMB Rep 43:140–145

    Article  CAS  Google Scholar 

  • Yugarani T, Tan BK, Teh M, Das NP (1992) Effects of polyphenolic natural products on the lipid profiles of rats fed high fat diets. Lipids 27:181–186

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong (Grant ZR2016CM18), Key Technology Innovation Project of Shandong Province (Grant No. 2018CXGC0102), Innovation Team Fund Project of Young Xiangsi Lake Scholars of Guangxi University for Nationalities (2018RSCXSHQN02), and Scientific Research Foundation for the Introduced Talents of Guangxi University for Nationalities (2018KJQD14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongwu Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Gu, Y., Pang, Q. et al. Vitamin C inhibits lipid deposition through GSK-3β/mTOR signaling in the liver of zebrafish. Fish Physiol Biochem 46, 383–394 (2020). https://doi.org/10.1007/s10695-019-00727-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-019-00727-1

Keywords

Navigation