Fish Physiology and Biochemistry

, Volume 44, Issue 2, pp 423–433 | Cite as

Physiological mechanism of osmoregulatory adaptation in anguillid eels

  • Quanquan Cao
  • Jie Gu
  • Dan Wang
  • Fenfei Liang
  • Hongye Zhang
  • Xinru Li
  • Shaowu Yin
Open Access


In recent years, the production of eel larvae has dramatic declines due to reductions in spawning stocks, overfishing, growth habitat destruction and access reductions, and pollution. Therefore, it is particularly important and urgent for artificial production of glass eels. However, the technique of artificial hatching and rearing larvae is still immature, which has long been regarded as an extremely difficult task. One of the huge gaps is artificial condition which is far from the natural condition to develop their capability of osmoregulation. Thus, understanding their osmoregulatory mechanisms will help to improve the breed and adapt to the changes in the environment. In this paper, we give a general review for a study progress of osmoregulatory mechanisms in eels from five aspects including tissues and organs, ion transporters, hormones, proteins, and high throughput sequencing methods.


Anguillid eels Catadromous migration Osmoregulation Ion transport 


Dramatic declines in glass eel recruitment of temperate species like the American (Anguilla rostrata), European (Anguilla anguilla), Japanese (Anguilla japonica), and Australian (Anguilla australis) eels have raised concerns (Côté et al. 2009; Harrison et al. 2014; Hoyle and Jellyman 2002). The reasons for the declines are unclear but are probably due to reductions in spawning stocks, overfishing, growth habitat and access reductions, pollution, swim bladder, gill parasites and viral infections, global climate change, and the solar cycle (Clevestam et al. 2011; Lin et al. 2010; Parker et al. 2008; Zenimoto et al. 2009). The drastic decline of recruiting wild glass eels has attracted much attention, so it has been increasing an urgent need for technology development in artificial seedlings production (Casselman 2003; Tanaka 2015; Unuma et al. 2012). Since the life history of the eel holds many mysteries, the artificial hatching and rearing of larvae has long been regarded as an extremely difficult task (Okamura et al. 2009; Unuma et al. 2004). The techniques of rearing leptocephalus larvae up to glass eels have been improved significantly in the laboratory, but these are still far from marketization (Celino et al. 2009; Okamura et al. 2014; Tanaka 2003; Tanaka 2014). To understand the artificial hatching and rearing of larvae, it is necessary to study physiological mechanism of osmoregulatory adaptation in anguillid eels.

The anguillid eels, as catadromous species, breed in the sea and migrate to grow near shore or freshwater habitats before returning to spawn in the sea. Therefore, it exhibits a remarkable ability to adapt its physiology as it transfers between seawater (SW, hyperosmotic) and freshwater (FW, hypoosmotic) environments (Maciver et al. 2009). In order to survive, it must completely shift its osmoregulatory system from the one in which excess salt is eliminated and water conserved (in SW), to the one in which the exact opposite is true (in FW). During the migratory process, how the osmotic pressure coordinates with the change of ion concentration to achieve the homeostasis is one of the important tasks in the research of genus Anguilla (Aarestrup et al. 2009; Morinière et al. 2002). Corresponding changes in salinity conditions affect the growth and development of eel (Gagnaire et al. 2009; Hu and Duan 2013). Changing ambient conditions will also influence the processing ability of osmotic pressure variation. Thus, it is particularly important to reveal the osmoregulation mechanism of eel and to increase the valuable theoretical basis in the research of genus Anguilla.

At present, scholars mainly focused on the osmotic regulation mechanism of anguillid eels and gained some important achievements in different aspects of the research. This article firstly introduces the osmoregulatory organs in the genus Anguilla, then presents the details of the osmotic regulation of ion transporters, hormones, proteins, and the transcriptomic and proteomic studies, and finally summarizes and reviews the research progress of osmotic regulation mechanism in recent years.

Osmoregulatory tissues and organs

Fishes obtain salts from food and ion absorption operating mainly in the gill, kidney, and intestine. (Hiroi et al. 2008; Martinez et al. 2005c; Saglam et al. 2013). These are important osmoregulatory tissues that function to maintain ion and water homeostasis as fish move between environments of wide ranging salinities (Comrie et al. 2001; Kültz 2015; Peh et al. 2009).

In both situations that eels are subjected to a high osmotic stress during migration from FW to SW, one of the major sites of water and ionic exchange between the internal milieu and the external environment are the gills (Lafont et al. 2006). The gill is a major site of passive ion and water movements owing to its large surface area and directly contract with the external environment (Mi et al. 2013; Miyoung 2009). At the same time, the gill is among the most important osmoregulatory organs because of the presence of pavement cells (PVC), mucus cells (MC), and various types of ion-transporting, mitochondrion-rich cells (MRC) (Catches et al. 2006; Girard and Payan 1980; Lai et al. 2015; Mizuhira et al. 1970). MRCs in the gills are the major site of ion absorption and secretion. There is consensus that MRCs maintain transcellular secretion of Cl and establish the conditions for paracellular electrochemical diffusion of Na+, which are important in both FW and SW adaptation (Pelis et al. 2001; Perry 1997; Seo et al. 2013; Utida et al. 1971).

The renal sulfate transport system has dual roles in euryhaline eel, namely, maintenance of sulfate homeostasis and osmoregulation of body fluids (Nakada et al. 2005). The trunk kidney of teleosts is generally composed of numerous nephrons, acting as a functional unit for renal osmoregulation, and the infilling lymphoid tissues (Teranishi et al. 2013). In FW teleosts, the nephron consists of a renal corpuscle and proximal and distal renal tubules, followed by a collecting duct, whereas nephrons in SW teleosts typically lack the distal tubule (Akira et al. 2005; Teranishi 2010). In particular, the kidney plays a major role in euryhaline teleost such as eel as it helps in maintaining body fluid homeostasis during the course of adaptation to different salinities (Li et al. 2015; Martinez et al. 2005a; Teranishi et al. 2013). The kidney is fully by glomerular functions as in any other euryhaline fish (Cliff and Beyenbach 1988; Kenyon et al. 1985; Teranishi 2010). In SW, the euryhaline fish kidney filters plasma at low rates to conserve water, and tubular secretion of electrolytes and fluid contribute significantly to urine formation, serving primarily as the main secretary route for absorbed Mg2+, Ca2+, and SO42− (Rajagopal and Wallace 2015). While in FW, the kidney filters at high rates and reabsorbs nearly all filtered solutes, thereby producing large volumes of dilute urine. In this way, the osmotic water loads of the FW habitat are excreted (Nishimura et al. 1983; Teranishi et al. 2013).

As for the intestine, it needs to cope with potential dehydration from the hyperosmotic seawater environment (Yuge and Takei 2007). Numerous Na+-K+-2Cl-cotransporters (NKCCs) are located on the mucosal surface of the intestinal epithelia in SW fish for absorption of these three ions in parallel with water absorption from the intestinal lumen (Schettino and Lionetto 2003; Yuge and Takei 2007). It was well known that water was hardly absorbed in the stomach and intestine, and water absorption predominantly took place in the rectum. For example, the Japanese eel exert hyperosmotic ability as early as during leptocephalus stages, secreting Na+ and Cl through absorbing water from ingested seawater in the rectum (Lee et al. 2012).

Eels sometimes need to adjust saline pressure by nervous system (Hirano et al. 1972; Montero et al. 2010). While neural mechanisms through drinking play an essential role in body fluid balance in marine teleost fish, as the sole means to compensate for osmotic water loss (Hirano et al. 1972; Takei et al. 1979). Drinking behavior is integrated in the brain through several neuropeptides, which may centrally act in a paracrine/autocrine fashion to regulate drinking peripheral hormones through structures devoid of the blood–brain barrier (Takei et al. 1979). In the eel, swallowing is coordinated by the glossopharyngeal and vagus nerves, which originate from the glossopharyngeal-vagal complex (GVC) located in the midbrain–hindbrain area of the brain (Mukuda 2003). The GVC is a motor nucleus controlling swallowing and regulating contraction of the upper esophageal sphincter (UES) muscle via the vagal nerve fibers (Kozaka and Ando 2003; Mukuda and Ando 2003). Therefore, there is a possibility that the relaxin-producing neurons identified in the midbrain and hindbrain send their axons to the GVC and regulate swallowing in eels (Hu et al. 2011). It has been shown that systemic injection of eel atrial natriuretic peptide acts on the area postrema in the eel hindbrain and potently inhibits drinking (Tsukada et al. 2007), and direct injection of adrenomedullins into the cerebral ventricle of eels induced drinking (Ogoshi et al. 2008).

Ion transporter

The basolateral sodium-potassium ATPase (NKA) concentrates Na+ extracellularly, and sodium-potassium-chloride cotransporter (NKCC1) takes up Cl from the serosal side; NKA concentrates Na+ extracellularly, which builds up an electrochemical gradient to excrete Na+ via a paracellular pathway while Cl is excreted via apical CFTR transcellularly due to a lower intracellular voltage (Rajagopal and Wallace 2015). To be specific, NKA maintains the Na+ gradient in the cell, which converts the NKCC to cotransport Cl against its electrochemical gradient. The intracellular Cl exits the cell via the apical CFTR channel down its electrochemical gradient (Hirose et al. 2003). The movements of essential ion, chloride, and sodium, are effected through a main enzyme, the NKA in these epithelium cells. It also coordinated with other ion channels and transporters, such as the NKCC, the Na+/Clcotransporter (NCC), and the CFTR chloride channel (Lorin-Nebel et al. 2006). Following various mechanisms according to models and salinity, these channels and transporters are involved in the exchanges of both chloride and sodium (NKCC/NCC), or chloride alone (CFTR), either for their uptake (hyper-regulation in fresh water) or excretion (hypo-regulation in seawater) (Hirose et al. 2003; Lorin-Nebel et al. 2006; Marshall 2002; Papadakis et al. 2013; Varsamos et al. 2005). Na+ accumulated in the intercellular space exits across the tight junction between neighboring MRCs. In adult eels, the relationship between environmental salinity and branchial NKA has been firmly established at the cellular and molecular level (Wilson et al. 2007). In freshwater teleost fishes, NKA is involved in Na+ uptake, although levels of activity tend to be lower than in those found in seawater fishes. Freshwater eels also actively take up Na+ and Cl, although at rates significantly lower than other teleosts (Kuroki et al. 2016). In some fishes, Myoxocephalus octodecemspinosus and Anguilla anguilla, a vacuolar type proton ATPase (V-ATPase) is involved in indirectly driving Na+ uptake across the apical membrane via Na+ channels by creating a favorable electrochemical gradient (Catches et al. 2006; Harvey 2009; Lorin-Nebel et al. 2013). In A. anguilla and Fundulus heteroclitus, sodium–proton exchangers (NHE) directly facilitate Na+ uptake. The mechanism of Na+ uptake in eels has not yet been identified (Cutler and Cramb 2008; Edwards et al. 2005).

The reabsorption of sulfate via the apical Slc13a1 and basolateral Slc26a1 transporters may thus contribute to freshwater osmoregulation in euryhaline eels, via the regulation of circulating sulfate concentration (Nakada et al. 2005). Slc13a1 is an electrogenic Na+-dependent sulfate transporter (alternatively called Na+-SO42− cotransporter) located in the apical membrane of renal proximal tubule cells and mediates entry of Na+-SO42− (Busch et al. 1994). Slc26a1 is sulfate/anion exchanger mediating SO42− efflux across the basolateral membrane in exchange for HCO3 (Karniski et al. 1998). Taken together, the eel sulfate transport system, composed of apical Slc13a1 and basolateral Slc26a1, turn out to play dual roles under freshwater conditions: (1) to prevent sulfate loss and maintain sulfate homeostasis and (2) to accumulate and retain relatively high concentrations of sulfate as an osmolyte (Nakada et al. 2005). It explained not only the mechanism of maintaining sulfate homeostasis in freshwater but also why adult eels migrate to freshwater (Chadwick 1989).

Hormone in osmoregulation

In eels’ reproductive migration, they undergo several physiological and morphological changes, including growth and differentiation of the olfactory system, which is believed to be crucial for navigation during migration and spawning (Westin 1990). In addition, there is an increase in plasma steroid levels, which in teleosts include both estrogens and androgens (Lokman et al. 1998; Sbaihi et al. 2010). The change of the external environment sets off the phenomenon of osmoregulation, which is, in teleosts, under a complex endocrine regulation, involving various hormones such as prolactin, growth hormone, cortisol (Mccormick 2001).

Hormones play an essential role in the regulation of ion and water balance in salinity transfer (Bradshaw and McCormick 2006). In teleosts, one of the major hormones is the corticosteroid that facilitates the processes for the successful acclimation of fish from FW to SW (Aruna et al. 2012b; Balm et al. 1989; Mccormick 2011). Cortisol is the major corticosteroid found in euryhaline teleost fish, with release from inter renal gland being stimulated as fish are transferred from FW into SW (Mccormick 2011; Teles et al. 2013). And it is also often referred to as a SW-adapting hormone, as it is heavily implicated in the ability of fish to maintain water and electrolyte balance when in the SW environment (Aruna et al. 2012a; Kammerer et al. 2010; Tokarz et al. 2013).

The action of this hormone has been reported to include improved water absorptive capacity in both the intestine and the urinary bladder, and increased NKA activity in the gill, which together enable the fish to hyperosmolality in the hypersaline environment (Dantzler 2003). Plasma cortisol levels are known to rise following the transfer of eels from FW to SW, although the hormone’s general role is complex, and its functions include the mediation of the response to several different types of stressors (Fenwick and Forster 1972; Li and Takei 2003). Cortisol infusions in FW eels are able to mimic the effect of SW-acclimation on intestinal aquaporin 1 (AQP1) expression, or in the esophagus of silver eels (Martinez et al. 2005b; Martinez et al. 2005d).

Prolactin (PRL), growth hormone (GH), and somatolactin (SL) are pituitary hormones that control pleiotropic biological functions in teleosts and are originated from a common ancestral molecule (Rand and Swanson 1994 and Celis et al. 2004). Prolactin performs a variety of important functions in vertebrates, is known as the fresh water-adapting hormone in fish, and is also known to be essential for the successful acclimation of fish to FW (Manzon 2002). Elevations in plasma prolactin are positively correlated with salt absorption within the gill and water excretion in the kidney and processes essential for osmoregulation in hypotonic environments (Han et al. 2003; Park et al. 2008; Sudo et al. 2013a). Although this correlation has been known for many years, there is still very little information about the molecular mechanisms responsible for the initiation and maintenance of these physiological processes. Likewise, GH is also known to be a hormone required for SW adaptation, at least during the early stages of acclimation (Sakamoto and McCormick 2006). Although the actions of these hormones are linked to regulation of NKA and a number of other water and solute transporters, the molecular mechanisms responsible for these effects remain unknown. Moreover, GH regulates development and somatic growth and is involved as a hypo-osmoregulatory hormone for seawater adaptation in fish (Sakamoto and McCormick 2006). In contrast, teleost PRL is regarded as a hyper-osmoregulatory hormone for freshwater adaptation (Breves et al. 2011; Eckert et al. 2001; Watanabe et al. 2016). SL is involved in energy mobilization, stress response, calcium metabolism, acidosis, and pigmentation in teleosts, although there is little information of its osmoregulatory functions (Kawauchi and Sower 2006; Sudo et al. 2013b).

In addition, the eel is a euryhaline, migratory species that reverses water and ion regulation when moving between FW and SW environments. One of the most profound changes in regulation is drinking, which increases dramatically when eels are transferred from FW to SW (Hirano 1974). Two major hormones in the eel regulate drinking such as angiotensin II and the natriuretic peptides, and their concentration increased mildly and transiently after SW transfer in blood volume (Okawara et al. 1987; Tsukada and Takei 2006). Relaxins (RLN3) was known as an intrinsic brain peptide that regulates arousal and motivation (Olucha-Bordonau et al. 2003), which also plays an important role in the regulation of drinking in teleost fish (Takei 2008).

Other proteins in osmoregulation

Water is exchanged through osmosis following ionic gradients, a movement that is facilitated by transmembrane proteins (aquaporins, AQPs) (Giffard-Mena et al. 2007; Lin et al. 2004). It is a major intrinsic protein/aquaporin family of plasma membrane channels, and these aquaglyceroporins are usually capable of transporting small solutes, such as glycerol and urea, as well as water (Gorelick et al. 2006). The effect of AQP3 was widely known on water transport in the kidney of vertebrates in general and of eels in particular, especially in association with migration to the SW environment (Kalujnaia et al. 2007b; Martinez et al. 2005a).

Guanylin, uroguanylin, and lympho-guanylin are members of a family of heat-stable peptides that mediate their actions via the guanylate cyclase receptor isoform termed GC-C (Cutler et al. 2007; Li et al. 2015), which is likely to play a major role in osmoregulation in both freshwater and marine teleosts (Comrie et al. 2001). The major function of guanylin is regulation of water and electrolytes (particularly Cl) transport of the intestine, and uroguanylin also participates in renal handling of water and electrolytes (Yuge et al. 2003). Guanylins are synthesized locally in the intestine and secreted into the lumen to act on the GC-Cs in the apical membrane of eel intestinal cells. Then, intracellular cGMP produces after ligand–receptor interaction activates CFTR and probably induces Cl and/or HCO3 secretion into the lumen as suggested in mammals. The physiological significance of the anion secretion induced by the luminal guanylin/GC-C system on SW adaptation may rival or exceed that of the serosally derived natriuretic peptides in the euryhaline eel (Takei and Yuge 2007).

The members of the cation-chloride-cotransporter (CCC) gene family are most closely associated with the processes of Na and Cl ion absorption in epithelia, such as Na+/K+/Cl cotransporter, NKCC2 and the Na+/Cl cotransporter (NCC) (Hoffmann et al. 2007). These two cotransporters are expressed almost exclusively in the thick ascending loop of Henle and the distal convoluted tubule of the kidney respectively and play major roles in NaCl reabsorption during urine formation. The main role of the postulated NKCC2-like Na+/K+/Cl cotransporter in eel fish is to absorb ions from imbibed seawater in the intestinal lumen, which result primarily from an osmoregulatory drinking response. The NKCC2-like cotransporter is consequently thought to be present in the apical brush-border membrane of the tall columnar surface epithelial cells of the intestine, where it carries a significant proportion of the sodium, potassium, and chloride ions absorbed from the lumen, into these cells (Ando et al. 2003; Cutler and Cramb 2008). In renal tubules and collecting ducts, Na+ and Cl are reabsorbed from primitive urine through Na+/H+ exchanger 3 (NHE3) in the proximal tubule, Na+-K+-2Cl cotransporter 2 (NKCC2) in the thick ascending limb of Henle’s loop, Na+-Cl cotransporter (NCC) in the distal convoluted tubule, and epithelial Na+ channel (ENaC) in the collecting duct (Pochynyuk et al. 2008). Tse et al. demonstrated the effect of osmotic shrinkage that stimulated cell regulatory volume increase (RVI) as well as the expressions of the three important ion transporters: Na+/K+-ATPase, Na+/K+/2Cl cotransporter (NKCC), and Na+/H+ exchanger-1 (NHE-1) using purified pavement cells (PVCs) (Tse et al. 2006).

High throughput sequencing method applied in osmoregulation of eel

The application of transcriptomics to the biology of eels can provide a significant increase in basic information making it a powerful tool to enable basic and applied research. High throughput sequencing technologies provide new options to characterize transcriptomes and drive the development of new molecular tools and ultimately leading to a better understanding of the biology of the species (Baillon et al. 2015; Coppe et al. 2010; Gu et al. 2015; Henkel et al. 2012; Minegishi et al. 2012; Natasha et al. 2009; Ohara 2009). With the recent advancements of deep sequencing technology, the generation of transcriptome data is fast and comprehensive, which greatly facilitates the applications of functional genomics (Shokralla et al. 2012; Vera et al. 2008). In 2010, the first transcriptomic study through deep sequencing was performed on gill of A. anguilla (Coppe et al. 2010). Utilization of transcriptomic sequencing gave insights into the osmoregulation mechanism, providing transcriptomic view of A. japonica catadromous behavior. This annotation provides information of the coding regions of the genes supported by transcriptome. The derived homologous evidences pave the way for phylogenetic analysis of important genetic traits and the improvement of the genome assembly (Liu et al. 2016).

In addition to transcriptome analysis, it is also important to conduct proteomic studies since it is proteins, rather than mRNA, that carry out biological functions (Tomanek 2011). Besides, post-translation modifications such as phosphorylation cannot be determined by mRNA analysis. Recently developed proteomic techniques, such as isobaric tag for relative and absolute quantization (iTRAQ), can provide more reliable quantitative measurements and comparisons among samples than traditional two dimensional electrophoresis (2DE) analysis in Japanese eel (Tse et al. 2015). Moreover, iTRAQ analysis allows identification of more proteins than previous 2-DE proteomics and more reliable quantification of the proteins. Producing a sufficient number of proteins makes it possible to conduct pathway and protein–protein interaction analysis (Wang and You 2012). To be specific, in Anguilla japonica, Tse et al. had identified 19 gill proteins that respond to short-term hyperosmotic stress. Together with the protein–protein interaction network analysis, the study revealed the potential importance of the NFKB pathway in osmoregulation (Tse et al. 2013). In A. marmorata, Jia et al. detected a large number of differentially expressed proteins by iTRAQ method and a variety of miRNAs with a significant difference between two salinity levels (BW and SW), either in upregulation or downregulation status. These proteins enriched in different GO terms and KEGG pathways suggest the different mechanisms for the acclimation of juvenile eels to brackish water and seawater (Jia et al. 2016; Wang et al. 2015).

By combining the recent technological and methodological advances in transcriptomic and proteomic analysis, this genome wide study aims to identify specific eel gill proteins that play roles in acute FW to SW transfer. Furthermore, the microarray technique for salinity acclimation studies using known genes previously implicated in osmoregulation including prolactin, growth hormone, the Na+, K+, 2Clcotransporter, and the Na+/K+-ATPase; and then also to report some unknown genes, the role of which in osmoregulation remains to be elucidated (Kalujnaia et al. 2007a).

Conclusions and future perspective

Like zebrafish, the eel belongs to the lower teleostei which are more primitive than pufferfish and medaka, two species of Percomorpha. In this study, we chose eels as a model species because they are euryhaline with excellent osmoregulatory ability, and various experimental techniques had been established in this species for physiological studies (Tsuchida and Takei 1998).

Euryhalinity and environmental stress tolerance are physiological traits that enable eels to complete their life cycle in variable habitats of fluctuating salinity. By contrast, Stenohaline fish, such as common carp, inhabiting osmotically stable environments (the oceans or freshwater lakes and streams) (Kültz 2015). So a wide physiological salinity tolerance range makes eels to have a much stronger trait and complicated function to adapt to high salinity stress. Many ion transporters, hormones, and proteins are involved in salinity stress tolerance, and they compete for the crowded cell interior and for energy resources supporting their synthesis and stabilization.

Some questions are still worth thinking about. Some gene isoforms have tissue-specific or organ-specific expression pattern, which kind of functions they act? There would still more ion channel genes to be cloned in eels compared to mammals. What is more, the application of the knowledge about candidate genes is currently hampered by the lack of understanding of their functions at cell, tissue, and whole-fish levels.

Additionally, no studies examined naturally transfers from a hypersaline condition to either seawater or freshwater. These types of transfers should be explored. Since few studies that examined intraspecific variation in gene expression focused on teleosts, it needs further studies to be expanded in general. Finally, few studies examined gene expression in wild-caught animals, although some were not included because a reasonable approximation of time since transfer could not be estimated. Such a trend calls for better understanding of the biochemical and physiological mechanisms that enable eels to cope with large salinity fluctuations and extreme salinities.


Funding information

This study was supported by the Natural science of Jiangsu Province (BK20141450), the National Natural Science Foundation of China (30770283), and the Project Foundation of the Academic Program Development of Jiangsu Higher Education Institution (PAPD).


  1. Aarestrup K, Okland F, Hansen MM, Righton D, Gargan P, Castonguay M, Bernatchez L, Howey P, Sparholt H, Pedersen MI (2009) Oceanic spawning migration of the European eel (Anguilla anguilla). Science 325(5948):1660. PubMedCrossRefGoogle Scholar
  2. Akira K, Hiroyuki D, Tsutomu N, Harumi S, Shigehisa H (2005) Takifugu obscurusis a euryhaline fugu species very close to Takifugu rubripesand suitable for studying osmoregulation. BMC Physiol 5:18CrossRefGoogle Scholar
  3. Ando M, Mukuda T, Kozaka T (2003) Water metabolism in the eel acclimated to sea water: from mouth to intestine. Comp Biochem Phys B 136:621–633CrossRefGoogle Scholar
  4. Aruna A, Nagarajan G, Chang CF (2012a) Differential expression patterns and localization of glucocorticoid and mineralocorticoid receptor transcripts in the osmoregulatory organs of tilapia during salinity stress. Gen Comp Endocr 179(3):465–476. PubMedCrossRefGoogle Scholar
  5. Aruna A, Nagarajan G, Chang CF (2012b) Involvement of corticotrophin-releasing hormone and corticosteroid receptors in the brain-pituitary-gill of tilapia during the course of seawater acclimation. J Neuroendocrinol 24(5):818–830. PubMedCrossRefGoogle Scholar
  6. Baillon L, Pierron F, Coudret R, Normendeau E, Caron A, Peluhet L, Labadie P, Budzinski H, Durrieu G, Sarraco J (2015) Transcriptome profile analysis reveals specific signatures of pollutants in Atlantic eels. Ecotoxicology 24(1):71–84. PubMedCrossRefGoogle Scholar
  7. Balm PHM, Lambert JDG, Bonga SEW (1989) Corticosteroid biosynthesis in the interrenal cells of the teleost fish, Oreochromis mossambicus. Gen Comp Endocr 76(1):53–62. PubMedCrossRefGoogle Scholar
  8. Bradshaw D, McCormick S (2006) Hormonal control of salt and water balance in vertebrates—a symposium. Gen Comp Endocr 147(1):1–2. PubMedCrossRefGoogle Scholar
  9. Breves JP, Seale AP, Helms RE, Tipsmark CK, Hirano T, Grau EG (2011) Dynamic gene expression of GH/PRL-family hormone receptors in gill and kidney during freshwater-acclimation of Mozambique tilapia. Comp Biochem Phys A 158:194–200CrossRefGoogle Scholar
  10. Busch AE, Waldegger S, Herzer T, Biber J, Markovich D, Murer H, Lang F (1994) Electrogenic cotransport of Na+ and sulfate in Xenopus-oocytes expressing the cloned Na+/SO4 2− transport protein Nasi-1. J Biol Chem 269:12407PubMedGoogle Scholar
  11. Côté CL, Castonguay M, Verreault G, Bernatchez L (2009) Differential effects of origin and salinity rearing conditions on growth of glass eels of the American eel Anguilla rostrata: implications for stocking programmes. J Fish Biol 74(9):1934–1948. PubMedCrossRefGoogle Scholar
  12. Casselman JM (2003) Dynamics of resources of the American eel, Anguilla rostrata: declining abundance in the 1990s. Eel Bio 2003:255–274CrossRefGoogle Scholar
  13. Catches JS, Burns JM, Edwards SL, Claiborne JB (2006) Na+/H+ antiporter, V-H+-ATPase and Na+/K+-ATPase immunolocalization in a marine teleost (Myoxocephalus octodecemspinosus). J Exp Biol 209(17):3440–3447. PubMedCrossRefGoogle Scholar
  14. Celino FT, Yamaguchi S, Miura C, Miura T (2009) Arsenic inhibits in vitro spermatogenesis and induces germ cell apoptosis in Japanese eel (Anguilla japonica). Reproduction 138(2):279–287. PubMedCrossRefGoogle Scholar
  15. Celis VRD, Rojas P, Gómez-Requeni P, Albalat A, Gutiérrez J, Médale F. (2004) Nutritional assessment of somatolactin function in gilthead sea bream (Sparus aurata). International Symposium on Fish EndocrinologyGoogle Scholar
  16. Chadwick EMP (1989) Diadromy in fishes: migrations between freshwater and marine environments by R. M. McDowall. The Quarterly Review of Biol 39Google Scholar
  17. Clevestam PD, Ogonowski M, Sjöberg NB, Wickström H (2011) Too short to spawn? Implications of small body size and swimming distance on successful migration and maturation of the European eel Anguilla anguilla. J Fish Biol 78(4):1073–1089. PubMedCrossRefGoogle Scholar
  18. Cliff WH, Beyenbach KW (1988) Fluid secretion in glomerular renal proximal tubules of freshwater-adapted fish. Am J Physiol-Cell PH 254:154–158Google Scholar
  19. Comrie MM, Cutler CP, Cramb G (2001) Cloning and expression of Guanylin from the European eel (Anguilla anguilla). Biochem Bioph Res Co 281(5):1078–1085. CrossRefGoogle Scholar
  20. Coppe A, Pujolar JM, Maes GE, Larsen PF, Hansen MM, Bernatchez L, Zane L, Bortoluzzi S (2010) Sequencing, de novo annotation and analysis of the first Anguilla anguilla transcriptome: EeelBase opens new perspectives for the study of the critically endangered European eel. BMC Genomics 11(1):635. PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cutler CP, Cramb G (2008) Differential expression of absorptive cation-chloride-cotransporters in the intestinal and renal tissues of the European eel (Anguilla anguilla). Comp Biochem Phys B 149:63–73CrossRefGoogle Scholar
  22. Cutler CP, Phillips C, Hazon N, Cramb G (2007) Cortisol regulates eel (Anguilla anguilla) aquaporin 3 (AQP3) mRNA expression levels in gill. Gen Comp Endocr 152(2-3):310–313. PubMedCrossRefGoogle Scholar
  23. Dantzler WH (2003) Regulation of renal proximal and distal tubule transport: sodium, chloride and organic anions. Comp Biochem Phys A 136:453–478CrossRefGoogle Scholar
  24. Eckert SM, Yada T, Shepherd BS, Stetson MH, Hirano T, Grau EG (2001) Hormonal control of osmoregulation in the channel catfish Ictalurus punctatus. Gen Comp Endocr 122(3):270–286. PubMedCrossRefGoogle Scholar
  25. Edwards SL, Wall BP, Morrison-Shetlar A, Sligh S, Weakley JC, Claiborne JB (2005) The effect of environmental hypercapnia and salinity on the expression of NHE-like isoforms in the gills of a euryhaline fish (Fundulus heteroclitus). J Exp Zool Part A 303:464–475CrossRefGoogle Scholar
  26. Fenwick JC, Forster ME (1972) Effects of stanniectomy and hypophysectomy on total plasma cortisol levels in the eel ( Anguilla anguilla L). Gen Comp Endocr 19(1):184–191. PubMedCrossRefGoogle Scholar
  27. Gagnaire PA, Minegishi Y, Aoyama J, Réveillac E, Robinet T, Bosc P, Tsukamoto K, Feunteun E, Berrebi P (2009) Ocean currents drive secondary contact between Anguilla marmorata populations in the Indian Ocean. Mar Ecol-Prog Ser 379:267–278CrossRefGoogle Scholar
  28. Giffard-Mena I, Boulo V, Aujoulat F, Fowden H, Castille R, Charmantier G, Cramb G (2007) Aquaporin molecular characterization in the sea-bass (Dicentrarchus labrax): the effect of salinity on AQP1 and AQP3 expression. Comp Biochem Phys A 148:430–444CrossRefGoogle Scholar
  29. Girard JP, Payan P (1980) Ion exchanges through respiratory and chloride cells in freshwater- and seawater-adapted teleosteans. Am J Physiol-Cell PH 238:R260Google Scholar
  30. Gorelick DA, Praetorius J, Tsunenari T, Nielsen S, Agre P (2006) Aquaporin-11: a channel protein lacking apparent transport function expressed in brain. BMC Biochem 7(1):14. PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gu J, Li JW, Tse WK, Chan TF, Lai KP, Wong CK (2015) Transcriptomic responses of corpuscle of Stannius gland of Japanese eels (Anguilla japonica) to changes in water salinity[J]. SCI Rep-UK, 2015 5(7):9836Google Scholar
  32. Han YS, Yu J, Liao IC, Tzeng WN (2003) Salinity preference of silvering Japanese eel Anguilla japonica: evidence from pituitary prolactin mRNA levels and otolith Sr:Ca ratios. Mar Ecol-Prog Ser 259:253–261CrossRefGoogle Scholar
  33. Harrison AJ, Walker AM, Pinder AC, Briand C, Aprahamian MW (2014) A review of glass eel migratory behaviour, sampling techniques and abundance estimates in estuaries: implications for assessing recruitment, local production and exploitation. Rev Fish Biol Fisher 24(4):967–983. CrossRefGoogle Scholar
  34. Harvey WR (2009) Voltage coupling of primary H+-V-ATPases to secondary Na+- or K+-dependent transporters. J Exp Biol 212(11):1620–1629. PubMedPubMedCentralCrossRefGoogle Scholar
  35. Henkel CV, Dirks RP, de Wijze DL, Minegishi Y, Aoyama J, Jansen HJ, Turner B, Knudsen B, Bundgaard M, Hvam KL (2012) First draft genome sequence of the Japanese eel, Anguilla japonica. Gene 511(2):195–201. PubMedCrossRefGoogle Scholar
  36. Hirano T (1974) Some factors regulating water intake by the eel, Anguilla japonica. J Exp Biol 61(3):737–747PubMedGoogle Scholar
  37. Hirano T, Satou M, Utida S (1972) Central nervous system control of osmoregulation in the eel (Anguilla japonica). Comp Biochem Phys A 43:537–544CrossRefGoogle Scholar
  38. Hiroi J, Yasumasu S, Mccormick SD, Hwang PP, Kaneko T (2008) Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. J Exp Biol 211(16):2584–2599. PubMedCrossRefGoogle Scholar
  39. Hirose S, Kaneko T, Naito N, Takei Y (2003) Molecular biology of major components of chloride cells. Comp Biochem Phys B 136:593–620CrossRefGoogle Scholar
  40. Hoffmann EK, Schettino T, Marshall WS (2007) The role of volume-sensitive ion transport systems in regulation of epithelial transport. Comp Biochem Phys A 148:29–43CrossRefGoogle Scholar
  41. Hoyle SD, Jellyman DJ (2002) Longfin eels need reserves: modelling the effects of commercial harvest on stocks of New Zealand eels. Mar Freshw Res 53(5):887–895. CrossRefGoogle Scholar
  42. Hu GB, Kusakabe M, Takei Y (2011) Localization of diversified relaxin gene transcripts in the brain of eels. Gen Comp Endocr 172(3):430–439. PubMedCrossRefGoogle Scholar
  43. Hu ZM, Duan DL (2013) Insufficient geographical sampling could severely influence phylogeographic interpretations. Mar Biol 160(6):1521–1522. CrossRefGoogle Scholar
  44. Jia Y, Yin S, Li L, Li P, Liang F, Wang X, Wang L, Su X (2016) iTRAQ proteomic analysis of salinity acclimation proteins in the gill of tropical marbled eel (Anguilla marmorata). Fish Physiol Biochem 42(3):935–946. PubMedCrossRefGoogle Scholar
  45. Kültz D (2015) Physiological mechanisms used by fish to cope with salinity stress. J Exp Biol 218(12):1907–1914. PubMedCrossRefGoogle Scholar
  46. Kalujnaia S, Mcwilliam IS, Zaguinaiko VA, Feilen AL, Nicholson J, Hazon N, Cutler CP, Balment RJ, Cossins AR, Hughes M (2007a) Salinity adaptation and gene profiling analysis in the European eel (Anguilla anguilla) using microarray technology. Gen Comp Endocr 152(2-3):274–280. PubMedCrossRefGoogle Scholar
  47. Kalujnaia S, McWilliam IS, Zaguinaiko VA, Feilen AL, Nicholson J, Hazon N, Cutler CP, Balment RJ, Cossins AR, Hughes M, Cramb G (2007b) Salinity adaptation and gene profiling analysis in the European eel (Anguilla anguilla) using microarray technology. Gen Comp Endocr 152(2-3):274–280. PubMedCrossRefGoogle Scholar
  48. Kammerer BD, Cech JJ Jr, Kultz D (2010) Rapid changes in plasma cortisol, osmolality, and respiration in response to salinity stress in tilapia (Oreochromis mossambicus). Comp Biochem Phys A 157:260–265CrossRefGoogle Scholar
  49. Karniski LP, Lötscher M, Fucentese M, Hilfiker H, Biber J, Murer H (1998) Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. Am J Physiol-Cell PH 275(1):F79–F87. CrossRefGoogle Scholar
  50. Kawauchi H, Sower SA (2006) The dawn and evolution of hormones in the adenohypophysis. Gen Comp Endocr 148(1):3–14. PubMedCrossRefGoogle Scholar
  51. Kenyon CJ, Mckeever A, Oliver JA, Henderson IW (1985) Control of renal and adrenocortical function by the renin-angiotensin system in two euryhaline teleost fishes. Gen Comp Endocr 58(1):93–100. PubMedCrossRefGoogle Scholar
  52. Kozaka T, Ando M (2003) Cholinergic innervation to the upper esophageal sphincter muscle in the eel, with special reference to drinking behavior. J Comp Physiol B 173:135PubMedGoogle Scholar
  53. Kuroki M, Seo MY, Okamura A, Watanabe S, Tsukamoto K, Kaneko T (2016) Morphofunctional features of ionocytes in Japanese eel Anguilla japonica leptocephali acclimated to half-diluted and full-strength seawater. Ichthyol Res 63(4):487–495. CrossRefGoogle Scholar
  54. Lafont AG, Fitzpatrick T, Rankin JC, Dufour S, Fouchereau-Peron M (2006) Possible role of calcitonin gene-related peptide in osmoregulation via the endocrine control of the gill in a teleost, the eel, Anguilla anguilla. Peptides 27(4):812–819. PubMedCrossRefGoogle Scholar
  55. Lai KP, Li JW, Gu J, Chan TF, Tse WKF, Wong CKC (2015) Transcriptomic analysis reveals specific osmoregulatory adaptive responses in gill mitochondria-rich cells and pavement cells of the Japanese eel. BMC Genomics 16(1):1072. PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lee KM, Yamada Y, Okamura A, Tsukamoto K, Kaneko T (2012) Hyposmoregulatory ability and ion- and water-regulatory mechanisms during the leptocephalus stages of Japanese eel Anguilla japonica. Fish Sci 79:77–86CrossRefGoogle Scholar
  57. Li L, Jia Y, Li P, Yin S, Zhang G, Wang X, Wang Y, Wang X, Zang X, Ding Y (2015) Expression and activity of V-H+-ATPase in gill and kidney of marbled eel Anguilla marmorata in response to salinity challenge. J Fish Biol 87(1):28–42. PubMedCrossRefGoogle Scholar
  58. Li YY, Takei Y (2003) Ambient salinity-dependent effects of homologous natriuretic peptides (ANP, VNP, and CNP) on plasma cortisol level in the eel. Gen Comp Endocr 130(3):317–323. PubMedCrossRefGoogle Scholar
  59. Lin CH, Huang CL, Yang CH, Lee TH, Hwang PP (2004) Time-course changes in the expression of Na+, K+-ATPase and the morphometry of mitochondrion-rich cells in gills of euryhaline tilapia (Oreochromis mossambicus) during freshwater acclimation. J Exp Zool Part A 301:85–96CrossRefGoogle Scholar
  60. Lin YJ, Chang YJ, Sun CL, Tzeng WN (2010) Evaluation of the Japanese eel fishery in the lower reaches of the Kao-Ping River, southwestern Taiwan using a per-recruit analysis. Fish Res 106(3):329–336. CrossRefGoogle Scholar
  61. Liu YC, Hsu SD, Chou CH, Huang WY, Chen YH, Liu CY, Lyu GJ, Huang SZ, Aganezov S, Alekseyev MA et al (2016) Transcriptome sequencing based annotation and homologous evidence based scaffolding of Anguilla japonica draft genome. BMC Genomics 17(Suppl 1):13PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lokman PM, Vermeulen GJ, Lambert JGD, Young G (1998) Gonad histology and plasma steroid profiles in wild New Zealand freshwater eels (Anguilla dieffenbachii and A. australis) before and at the onset of the natural spawning migration. I. Females. Fish Physiol Biochem 19(4):325–338. CrossRefGoogle Scholar
  63. Lorin-Nebel C, Boulo V, Bodinier C, Charmantier G (2006) The Na+/K+/2Cl cotransporter in the sea bass Dicentrarchus labrax during ontogeny: involvement in osmoregulation. J Exp Biol 209(24):4908–4922. PubMedCrossRefGoogle Scholar
  64. Lorin-Nebel C, Felten V, Blondeau-Bidet E, Grousset E, Amilhat E, Simon G, Biagianti S, Charmantier G (2013) Individual and combined effects of copper and parasitism on osmoregulation in the European eel Anguilla anguilla. Aquat Toxicol 130-131:41–50. PubMedCrossRefGoogle Scholar
  65. Maciver B, Cutler CP, Yin J, Hill MG, Zeidel ML, Hill WG (2009) Expression and functional characterization of four aquaporin water channels from the European eel (Anguilla anguilla). J Exp Biol 212(17):2856–2863. PubMedPubMedCentralCrossRefGoogle Scholar
  66. Manzon LA (2002) The role of prolactin in fish osmoregulation: a review. Gen Comp Endocr 125(2):291–310. PubMedCrossRefGoogle Scholar
  67. Marshall WS (2002) Na+, cl, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. J Exp Zool 293(3):264–283. PubMedCrossRefGoogle Scholar
  68. Martinez AS, Cutler CP, Wilson GD, Phillips C, Hazon N, Cramb G (2005a) Cloning and expression of three aquaporin homologues from the European eel (Anguilla anguilla): effects of seawater acclimation and cortisol treatment on renal expression. Biol Cell 97(8):615–627. PubMedCrossRefGoogle Scholar
  69. Martinez AS, Cutler CP, Wilson GD, Phillips C, Hazon N, Cramb G (2005b) Regulation of expression of two aquaporin homologs in the intestine of the European eel: effects of seawater acclimation and cortisol treatment. Am J Physiol-Reg I 288:R1733–R1743Google Scholar
  70. Martinez AS, Cutler CP, Wilson GD, Phillips C, Hazon N, Cramb G (2005c) Regulation of expression of two aquaporin homologs in the intestine of the European eel: effects of seawater acclimation and cortisol treatment. Am J Physiol Regul Integr Comp Physiol 288(6):R1733–R1743. PubMedCrossRefGoogle Scholar
  71. Martinez AS, Wilson G, Phillips C, Cutler C, Hazon N, Cramb G (2005d) Effect of cortisol on aquaporin expression in the esophagus of the European eel, Anguilla anguilla. Ann N Y Acad Sci 1040(1):395–398. PubMedCrossRefGoogle Scholar
  72. Mccormick SD (2001) Endocrine control of osmoregulation in teleost fish. Am Zool 41:781–794Google Scholar
  73. Mccormick SD (2011) The hormonal control of osmoregulation in teleost fish. In: Farrell AP (ed) Encyclopedia of fish physiology: from genome to environment. Academic Press, San Diego, pp 1466–1473. CrossRefGoogle Scholar
  74. Mi YS, Mekuchi M, Teranishi K, Kaneko T (2013) Expression of ion transporters in gill mitochondrion-rich cells in Japanese eel acclimated to a wide range of environmental salinity. Comp Biochem Phys A 166:323CrossRefGoogle Scholar
  75. Minegishi Y, Henkel CV, Dirks RP, Ge VDT (2012) Genomics in eels—towards aquaculture and biology. Mar Biotechnol 14(5):583–590. PubMedPubMedCentralCrossRefGoogle Scholar
  76. Miyoung S (2009) Morphological changes in gill mitochondria-rich cells in cultured Japanese eel Anguilla japonica acclimated to a wide range of environmental salinity. Fisheries SCI 75:1147–1156CrossRefGoogle Scholar
  77. Mizuhira V, Amakawa T, Yamashina S, Shirai N, Utida S (1970) Electron microscopic studies on the localization of sodium ions and sodium-potassium-activated adenosinetriphosphatase in chloride cells of eel gills. Eep Cell Res 59(2):346–348. CrossRefGoogle Scholar
  78. Montero M, Yon L, Rousseau K, Arimura A, Fournier A, Dufour S, Vaudry H (2010) Localization of pituitary adenylate cyclase-activating polypeptide in the central nervous system of the European eel Anguilla anguilla: stimulatory effect of PACAP on GH secretion. Ann N Y Acad Sci 865:475–477CrossRefGoogle Scholar
  79. Morinière ECDL, Pollux BJA, Nagelkerken I, Velde GVD (2002) Post-settlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuar Coast Shelf S 55(2):309–321. CrossRefGoogle Scholar
  80. Mukuda T, Ando M (2003) Medullary motor neurones associated with drinking behaviour of Japanese eels. J Fish Biol 62(1):1–12. CrossRefGoogle Scholar
  81. Mukuda T, MA (2003) Brain Atlas of the Japanese eel: comparison to other fishes. Sci Rep 29Google Scholar
  82. Nakada T, Zandinejad K, Kurita Y, Kudo H, Broumand V, Kwon CY, Mercado A, Mount DB, Hirose S (2005) Roles of Slc13a1 and Slc26a1 sulfate transporters of eel kidney in sulfate homeostasis and osmoregulation in freshwater. Am J Physiol-Reg I 289:R575–R585Google Scholar
  83. Natasha L, Olaf K, Antonio C, Alberto F, Diana B, Pascal B, Massimo D (2009) Combining next-generation pyrosequencing with microarray for large scale expression analysis in non-model species. BMC Genomics 10:1–9CrossRefGoogle Scholar
  84. Nishimura H, Imai M, Ogawa M (1983) Sodium chloride and water transport in the renal distal tubule of the rainbow trout. Am J Physiol-Cell PH 244(3):F247–F254. CrossRefGoogle Scholar
  85. Ogoshi M, Nobata S, Takei Y (2008) Potent osmoregulatory actions of homologous adrenomedullins administered peripherally and centrally in eels. Am J Physiol-Reg I 295:R2075Google Scholar
  86. Ohara O (2009) From transcriptome analysis to immunogenomics: current status and future direction. FEBS Lett 583(11):1662–1667. PubMedCrossRefGoogle Scholar
  87. Okamura A, Horie N, Mikawa N, Yamada Y, Tsukamoto K (2014) Recent advances in artificial production of glass eels for conservation of anguillid eel populations. Ecol Freshw Fish 23(1):95–110. CrossRefGoogle Scholar
  88. Okamura A, Yamada Y, Horie N, Mikawa N, Utoh T, Tanaka S, Tsukamoto K (2009) Toxicity and antibacterial activity of silver ions in the rearing water of Japanese eel eggs and larvae. Nippon Suisan Gakk 75(5):786–792. CrossRefGoogle Scholar
  89. Okawara Y, Karakida T, Aihara M, Yamaguchi KI, Kobayashi H (1987) Involvement of angiotensin II in water intake in the Japanese eel, Anguilla japonica: endocrinology. Zool Sci 4:523–528Google Scholar
  90. Olucha-Bordonau FE, Teruel V, Barcia-González J, Ruiz-Torner A, Valverde-Navarro AA, Martínez-Soriano F (2003) Cytoarchitecture and efferent projections of the nucleus incertus of the rat. J Comp Neurol 464(1):62–97. PubMedCrossRefGoogle Scholar
  91. Papadakis IE, Kentouri M, Divanach P, Mylonas CC (2013) Ontogeny of the digestive system of meagre Argyrosomus regius reared in a mesocosm, and quantitative changes of lipids in the liver from hatching to juvenile. Aquaculture 388-391:76–88. CrossRefGoogle Scholar
  92. Park, W. D., Lee, C. H., Kim, D. J., and Sohn, Y. C. (2008). Changes in prolactin and growth hormone gene expression in three freshwater teleosts with rapid changes in salinity. Fish. Soc 2008, 41(1):1–6Google Scholar
  93. Parker D, Weyl OLF, Taraschewski H (2008) Invasion of a south African Anguilla mossambica (Anguillidae) population by the alien gill worm Pseudodactylogyrus anguillae (Monogenea). Afr Zool 46:371–377Google Scholar
  94. Peh WYX, Chew SF, Wilson JM, Ip YK (2009) Branchial and intestinal osmoregulatory acclimation in the four-eyed sleeper, Bostrychus Sinensis (Lacepède), exposed to seawater. Mar Biol 156(9):1751–1764. CrossRefGoogle Scholar
  95. Pelis RM, Zydlewski J, Mccormick SD (2001) Gill Na(+)-K(+)-2Cl() cotransporter abundance and location in Atlantic salmon: effects of seawater and smolting. Am J Physiol-Reg I 280:R1844Google Scholar
  96. Perry SF (1997) The chloride cell: structure and function in the gills of freshwater fishes. Annu Rev Physiol 59(1):325–347. PubMedCrossRefGoogle Scholar
  97. Pochynyuk O, Bugaj V, Rieg T, Insel PA, Mironova E, Vallon V, Stockand JD (2008) Paracrine regulation of the epithelial Na+ channel in the mammalian collecting duct by purinergic P2Y2 receptor tone. The J Biol Chem 283(52):36599–36607. PubMedCrossRefGoogle Scholar
  98. Rajagopal M, Wallace DP (2015) Chloride secretion by renal collecting ducts. Curr Opin Nephrol Hy 24(5):444–449. CrossRefGoogle Scholar
  99. Rand-Weaver M, Swanson P (1994) Plasma somatolactin levels in coho salmon (Oncorhynchus kisutch) during smoltification and sexual maturation. Fish Physiol Biochem 11(1–6):175Google Scholar
  100. Saglam D, Atli G, Canli M (2013) Investigations on the osmoregulation of freshwater fish (Oreochromis niloticus ) following exposures to metals (Cd, Cu) in differing hardness. Ecotox Environ Safe 92:79–86. CrossRefGoogle Scholar
  101. Sakamoto T, McCormick SD (2006) Prolactin and growth hormone in fish osmoregulation. Gen Comp Endocr 147(1):24–30. PubMedCrossRefGoogle Scholar
  102. Sbaihi M, Fouchereau-Peron M, Meunier F, Elie P, Mayer I, Burzawa-Gerard E, Vidal B, Dufour S (2010) Reproductive biology of the conger eel from the south coast of Brittany, France and comparison with the Europe eel. J Fish Biol 59:302–318Google Scholar
  103. Schettino T, Lionetto MG (2003) Cl- absorption in European eel intestine and its regulation. Comp Biochem Phys A 300:63Google Scholar
  104. Seo MY, Mekuchi M, Teranishi K, Kaneko T (2013) Expression of ion transporters in gill mitochondrion-rich cells in Japanese eel acclimated to a wide range of environmental salinity. Comp Biochem Phys A 166:323–332CrossRefGoogle Scholar
  105. Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21(8):1794–1805. PubMedCrossRefGoogle Scholar
  106. Sudo R, Suetake H, Suzuki Y, Aoyama J, Tsukamoto K (2013a) Profiles of mRNA expression for prolactin, growth hormone, and somatolactin in Japanese eels, Anguilla japonica: the effect of salinity, silvering and seasonal change. Comp Biochem Phys A 164:10CrossRefGoogle Scholar
  107. Sudo R, Suetake H, Suzuki Y, Aoyama J, Tsukamoto K (2013b) Profiles of mRNA expression for prolactin, growth hormone, and somatolactin in Japanese eels, Anguilla japonica: the effect of salinity, silvering and seasonal change. Comp Biochem Phys A 164:10–16CrossRefGoogle Scholar
  108. Takei Y (2008) Exploring novel hormones essential for seawater adaptation in teleost fish. Gen Comp Endocr 157(1):3–13. PubMedCrossRefGoogle Scholar
  109. Takei Y, Hirano T, Kobayashi H (1979) Angiotensin and water intake in the Japanese eel, Anguilla japonica. Gen Comp Endocr 38(4):466–475. PubMedCrossRefGoogle Scholar
  110. Takei Y, Yuge S (2007) The intestinal guanylin system and seawater adaptation in eels. Gen Comp Endocr 152(2-3):339–351. PubMedCrossRefGoogle Scholar
  111. Tanaka H (2003) Techniques for larval rearing. Eel Biology:427–434.
  112. Tanaka H (2014) Progression in artificial seedling production of Japanese eel Anguilla japonica. Fisheries SCI 81:11–19CrossRefGoogle Scholar
  113. Tanaka H (2015) Progression in artificial seedling production of Japanese eel Anguilla japonica. Fisheries SCI 81(1):11–19. CrossRefGoogle Scholar
  114. Teles M, Tridico R, Callol A, Fierro-Castro C, Tort L (2013) Differential expression of the corticosteroid receptors GR1, GR2 and MR in rainbow trout organs with slow release cortisol implants. Comp Biochem Phys A 164:506–511CrossRefGoogle Scholar
  115. Teranishi K (2010) Spatial, cellular, and intracellular localization of Na+/K+-ATPase in the sterically disposed renal tubules of Japanese eel. J Histochem Cytochem 58(8):707–719. PubMedPubMedCentralCrossRefGoogle Scholar
  116. Teranishi K, Mekuchi M, Kaneko T (2013) Expression of sodium/hydrogen exchanger 3 and cation-chloride cotransporters in the kidney of Japanese eel acclimated to a wide range of salinities. Comp Biochem Phys A 164:333–343CrossRefGoogle Scholar
  117. Tokarz J, Norton W, Moller G, Hrabe de Angelis M, Adamski J (2013) Zebrafish 20beta-hydroxysteroid dehydrogenase type 2 is important for glucocorticoid catabolism in stress response. PLoS One 8(1):e54851. PubMedPubMedCentralCrossRefGoogle Scholar
  118. Tomanek L (2011) Environmental proteomics: changes in the proteome of marine organisms in response to environmental stress, pollutants, infection, symbiosis, and development. Annu Rev Mar Sci 3(1):373–399. CrossRefGoogle Scholar
  119. Tse WKF, Au DWT, Wong CKC (2006) Characterization of ion channel and transporter mRNA expressions in isolated gill chloride and pavement cells of seawater acclimating eels. Biochem Bioph Res Co 346(4):1181–1190. CrossRefGoogle Scholar
  120. Tse WK, Sun J, Zhang H, Lai KP, Gu J, Sheung Law AY, Yee Yeung BH, Ching Chow S, Qiu JW, Wong CK (2015) Data for transcriptomic and iTRAQ proteomic analysis of Anguilla japonica gills in response to osmotic stress. Data in brief 3:120–125. PubMedPubMedCentralCrossRefGoogle Scholar
  121. Tse WK, Sun J, Zhang H, Law AY, Yeung BH, Chow SC, Qiu JW, Wong CK (2013) Transcriptomic and iTRAQ proteomic approaches reveal novel short-term hyperosmotic stress responsive proteins in the gill of the Japanese eel (Anguilla japonica). J Proteome 89:81–94. CrossRefGoogle Scholar
  122. Tsuchida T, Takei Y (1998) Effects of homologous atrial natriuretic peptide on drinking and plasma ANG II level in eels. Am J Physiol-Cell Ph 275:R1605Google Scholar
  123. Tsukada T, Nobata S, Hyodo S, Takei Y (2007) Area postrema, a brain circumventricular organ, is the site of antidipsogenic action of circulating atrial natriuretic peptide in eels. J Exp Biol 210(22):3970–3978. PubMedCrossRefGoogle Scholar
  124. Tsukada T, Takei Y (2006) Integrative approach to osmoregulatory action of atrial natriuretic peptide in seawater eels. Gen Comp Endocr 147(1):31–38. PubMedCrossRefGoogle Scholar
  125. Unuma T, Kondo S, Tanaka H, Kagawa H, Nomura K, Ohta H (2004) Determination of the rates of fertilization, hatching and larval survival in the Japanese eel, Anguilla japonica, using tissue culture microplates. Aquaculture 241(1-4):345–356. CrossRefGoogle Scholar
  126. Unuma T, Sawaguchi S, Hasegawa N, Tsuda N, Tanaka T, Nomura K, Tanaka H (2012) Optimum temperature of rearing water during artificial induction of ovulation in Japanese eel. Aquaculture 358–359:216–223CrossRefGoogle Scholar
  127. Utida S, Kamiya M, and Shirai N (1971) Relationship between the activity of Na+/K+-activated adenosine triphosphatase and the number of chloride cells in eel gills with special reference to seawater adaption. Comp Biochem Phys A 38, 443,IN449,447–446,IN449,447Google Scholar
  128. Varsamos S, Nebel C, Charmantier G (2005) Ontogeny of osmoregulation in postembryonic fish: a review. Comp Biochem Phys A 141:401–429CrossRefGoogle Scholar
  129. Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17(7):1636–1647. PubMedCrossRefGoogle Scholar
  130. Wang M, You J (2012) Mass spectrometry for protein quantification in biomarker discovery. Methods Mol Biol 815:199–225. PubMedCrossRefGoogle Scholar
  131. Wang X, Yin D, Li P, Yin S, Wang L, Jia Y, Shu X (2015) MicroRNA-sequence profiling reveals novel osmoregulatory microRNA expression patterns in catadromous eel Anguilla marmorata. PLoS One 10(8):e0136383. PubMedPubMedCentralCrossRefGoogle Scholar
  132. Watanabe S, Itoh K, Kaneko T (2016) Prolactin and cortisol mediate the maintenance of hyperosmoregulatory ionocytes in gills of Mozambique tilapia: exploring with an improved gill incubation system. Gen Comp Endocr 232:151–159. PubMedCrossRefGoogle Scholar
  133. Westin L (1990) Orientation mechanisms in migrating European silver eel ( Anguilla anguilla ): temperature and olfaction. Mar Biol 106(2):175–179. CrossRefGoogle Scholar
  134. Wilson JM, Leitão A, Gonçalves AF, Ferreira C, Reis-Santos P, Fonseca A-V, da Silva JM, Antunes JC, Pereira-Wilson C, Coimbra J (2007) Modulation of branchial ion transport protein expression by salinity in glass eels (Anguilla anguilla L.) Mar Biol 151(5):1633–1645. CrossRefGoogle Scholar
  135. Yuge S, Inoue K, Hyodo S, Takei Y (2003) A novel guanylin family (guanylin, uroguanylin, and renoguanylin) in eels: possible osmoregulatory hormones in intestine and kidney. J Biol Chem 278(25):22726–22733. PubMedCrossRefGoogle Scholar
  136. Yuge S, Takei Y (2007) Regulation of ion transport in eel intestine by the homologous guanylin family of peptides. Zoologica 24:1222Google Scholar
  137. Zenimoto K, Kitagawa T, Miyazaki S, Sasai Y, Sasaki H, Kimura S (2009) The effects of seasonal and interannual variability of oceanic structure in the western Pacific north equatorial current on larval transport of the Japanese eel Anguilla japonica. J Fish Biol 74(9):1878–1890. PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Quanquan Cao
    • 1
  • Jie Gu
    • 2
  • Dan Wang
    • 1
  • Fenfei Liang
    • 1
  • Hongye Zhang
    • 1
  • Xinru Li
    • 1
  • Shaowu Yin
    • 1
  1. 1.College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu ProvinceNanjing Normal UniversityNanjingChina
  2. 2.Institute of Life ScienceJiangsu UniversityZhenjiangChina

Personalised recommendations