Skip to main content

Advertisement

Log in

A Review on Fire Protection Systems in Military and Civilian Vehicles

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Both military and civilian vehicles are prone to fire, with severe potential consequences in terms of material and life losses. Vehicles generally contain highly combustible and flammable materials, such as gasoline, lubricants, oil, electronic devices, rubber, plastics, and so on. At the same time, fire ignition sources are present in vehicles in electronic devices, friction, heat, etc. Fire ignition can also be caused by external sources, especially in military applications (aggression on the vehicle). Thus, appropriate measures and fire-fighting systems should be implemented to mitigate the risk of fire in military and civilian vehicles to ensure passenger safety and preserve the vehicles' mobility. Halon was previously commonly used as a fire-fighting agent in military and civilian vehicles but is currently phased out due to environmental issues. In this context, this paper aims to review the research advances and progress over the last 50 years in fire-fighting systems and agents employed in both civilian and military vehicles for land, sea, and air applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Abbreviations

AFCs:

Aerosol forming compositions

AFEAS:

Alternative fluorocarbon environmental acceptability study

AFFF:

Aqueous film forming foam

BCF:

Bromochlorodifluoromethane

BOD:

Biological oxygen demand

BTM:

Trifluorobromomethane

CAF:

Compressed air foam

CAFES:

Condensed aerosol-based fire extinguishing system

CFCs:

Chlorofluorocarbons

CFD:

Computational Fluid Dynamics

CO2 :

Carbon dioxide

COD:

Chemical oxygen demand

DGBE:

Diethylene glycol butyl ether

EPA:

The U. S. environmental protection agency

FAA:

The federal aviation administration

FDS:

Fire dynamics simulator

HEI:

High explosive incendiary

IMO:

International maritime organization

MRT:

The mass rapid transit

N2 :

Nitrogen

NATO:

The north atlantic treaty organization

NFPA:

The national fire protection association

NGP:

The US next generation fire suppression program

NOAEL:

No observable adverse effect level

O2 :

Di-oxygen

OEMs:

Original equipment manufacturers

OSHA:

The occupational safety and health administration

SFSEM:

The ship fire safety engineering methodology

STANAG:

Standardization agreement

TFFT:

The tactical fire-fighting truck

References

  1. Kim A, Liu Z, Crampton G (2007) Study of explosion protection in a small compartment. Fire Technol 43:145–172. https://doi.org/10.1007/s10694-007-0008-6

    Article  Google Scholar 

  2. Ahrens, M (2013) U.S Vehicle Fire Problem, by Type of Vehicle 2006–2010 Annual Averages. National Fire Protection Association. https://www.nfpa.org/-/media/Files/News-and-Research/Fire-statistics-and-reports/US-Fire-Problem/ostypeofvehicle.ashx

  3. Korivi V, Mccormick S, Hodges S (2017) Fire suppression modeling & simulation framework for ground vehicles. SAE Int J Trans Safety 5(1):58–67. https://doi.org/10.4271/2017-01-1351

    Article  Google Scholar 

  4. Mushrush GW, Willauer HD, Bailey JL, Hoover JB, Williams FW (2006) Petroleum-based hydraulic fluids and flammability. Pet Sci Technol 24(12):1441–1446. https://doi.org/10.1081/LFT-200056782

    Article  Google Scholar 

  5. Moshashaei P, Alizadeh SS, Khazini L et al (2017) Investigate the causes of fires and explosions at external floating roof tanks: a comprehensive literature review. J Fail Anal Preven 17:1044–1052. https://doi.org/10.1007/s11668-017-0333-0

    Article  Google Scholar 

  6. Rudz S, Chetehouna K, Séro-Guillaume O, Pastor E, Planas E (2009) Comparison of two methods for estimating fire positions and the rate of spread of linear flame fronts. Meas Sci Technol 20(11):115501. https://doi.org/10.1088/0957-0233/20/11/115501

    Article  Google Scholar 

  7. Zalosh RG (2012) Industrial Fire Protection Engineering, Chapter 7 Flammable Liquid Ignitability and Extinguishability. John Wiley & Sons Ltd. ISBN 0–471–49677–4

  8. Center for Chemical Process Safety (2003) Chapter 7 Fire Protection Fundamentals. Wiley. ISBN 0–8169–0898–2

  9. Brauer RL (2006) Fire protection and prevention. Safety and Health for Engineers, Second Edition. John Wiley & Sons, Inc

  10. Baxter CS (2012) Smoke and combustion products. Patty’s Toxicology, Sixth Edition. Volume 6. John Wiley & Sons, Inc

  11. Hurley M.J et al (2016) SFPE Handbook of Fire Protection Engineering, Fifth Edition. Doi: https://doi.org/10.1007/978-1-4939-2565-0

  12. Gassmann O, Meixner H (2001) Chapter 4.1 Safety and Security: Life Safety and Security Systems. Wiley-VCH Verlag GmbH. ISBNs: 3–527–29557–7 (Hardcover); 3–527–60030–2 (Electronic)

  13. Cowlard A et al (2010) Sensor assisted fire-fighting. Fire Technol 46(719–741):2010. https://doi.org/10.1007/s10694-008-0069-1

    Article  Google Scholar 

  14. Rose-Pehrsson SL et al (2000) Multi-criteria fire detection systems using a probabilistic neural network. Sens Actuators B 69(2000):325–335

    Article  Google Scholar 

  15. Kallergis KM (2001) New fire/smoke detection and fire extinguishing systems for aircraft applications. Air Space Europe 3(3/4):2001

    Google Scholar 

  16. Brown CA (2013) Fire Prevention and Protection. Handbook of Loss Prevention Engineering, First Edition. Wiley-VCH Verlag GmbH & Co. KGaA

  17. NATO standard STANAG 4317 (2016)

  18. Friedman R (2009) Fire Fighting Procedures. Principles of Fire Protection Chemistry and Physics, 3rd Edition, Jones and Bartlett, Sudbury, MA, 2009

  19. L Levendis YA, Delichatsios MA (2011) Pool fire extinction by remotely controlled application of liquid nitrogen. Wiley. Doi: https://doi.org/10.1002/prs.10439

  20. L Dee AW (1987) Fire Protection on Trains. Sagepub

  21. Lmcilroy A, Johnson LK (1996) Low-pressure flame studies of halon replacement combustion: characterization of byproducts and formation mechanisms. Combust Sci Technol 116–117(1–6):31–50. https://doi.org/10.1080/00102209608935542

    Article  Google Scholar 

  22. L Chattaway A (1997) The development of a hidden fire challenge. Fire Mater 21:219–228

    Article  Google Scholar 

  23. Grosshandler W et al (2000) Suppression of a Non-Premixed Flame Behind a Step. Proceedings of the Combustion Institute, Volume 28, 2000/pp. 2957–2964

  24. Lrusch GM (2018) The development of environmentally acceptable fluorocarbons. Crit Rev Toxicol. https://doi.org/10.1080/10408444.2018.1504276

    Article  Google Scholar 

  25. Gann RG (2008) Guidance for advanced fire suppression in aircraft. Fire Technol 44:263–282. https://doi.org/10.1007/s10694-007-0026-4

    Article  Google Scholar 

  26. Toms GS, Breslin DA, Brunner GP, Thill JC (2000) Navy’s CFC & Halon elimination program. Nav Eng J 112(1):91–112. https://doi.org/10.1111/j.1559-3584.2000.tb03271.x

    Article  Google Scholar 

  27. Breslin DA (1999) A history of the navy's strategic reserve of ozone-depleting substances. Nav Eng J 111(4). https://doi.org/10.1111/j.1559-3584.1999.tb01238.x

  28. Reynolds SC (1989) Navy/Marine Corps CFC/Halon Emissions Reduction Project — Prospectus. Nav Eng J. https://doi.org/10.1111/j.1559-3584.1989.tb00884.x

    Article  Google Scholar 

  29. Brasseur G (1987) The endangered ozone layer: new theories on ozone depletion. Environ: Sci Policy Sustain Dev 29(1):6–45. https://doi.org/10.1080/00139157.1987.9928845

    Article  Google Scholar 

  30. Andersen SO, Halberstadt ML, Borgford-Parnell N (2013) Stratospheric ozone, global warming, and the principle of unintended consequences—An ongoing science and policy success story. J Air Waste Manag Assoc 63(6):607–647. https://doi.org/10.1080/10962247.2013.791349

    Article  Google Scholar 

  31. Banks RE (1994) Environmental aspects of fluorinated materials. Part 2. ‘In-kind’ replacements for Halon fire extinguishants; some recent candidates. J Fluor Chem 67:193–203

    Article  Google Scholar 

  32. Rubenstein R (1993) Human health and environmental toxicity issues for evaluation of halon replacements. Toxicology Letters 68 21–24. Elsevier Science Publishers B.V

  33. Larsen ER (1995) Halons-comments on the development of replacement agents. Sagepub

  34. Stoudt MR et al (1996) Evaluation of the propensity of replacements for halon 1301 to induce stress-corrosion cracking in alloys used in aircraft fire-suppressant storage and distribution systems. JMEPEG 1996(5):507–515

    Article  Google Scholar 

  35. Gann RG (1998) Next-generation fire suppression technology program. Fire Technol 34(4):1998

    Article  Google Scholar 

  36. Maranghides A, Sheinson RS (1999) Flammable liquid storerooms: fire protection without halon 1301. Process Saf Prog 18(1):31–34

    Article  Google Scholar 

  37. Miziolek AW, Tsang W (1995) Halon replacements: technology and science, ACS symposium series NO. 611. ISBN: 0–8412–3327–6

  38. Chow WK, Lee EPF, Chau FT, Dyke JM (2004) The necessity of studying chemical reactions of the clean agent heptafluoropropane in fire extinguishment. Archit Sci Rev 47(3):223–227. https://doi.org/10.1080/00038628.2000.9697528

    Article  Google Scholar 

  39. Pagliaro JL et al (2014) Combustion inhibition and enhancement of premixed methane-air flames by halon replacements. Combust Flame. https://doi.org/10.1016/j.combustflame.2014.07.006

    Article  Google Scholar 

  40. Nolan DP (2019) Chapter 19: Methods of Fire Suppression. Handbook of Fire and Explosion Protection Engineering Principles for Oil, Gas, Chemical, and Related Facilities. DOI: https://doi.org/10.1016/B978-0-12-816002-2.00019-2

  41. Xu W et al (2016) Combustion promotion and extinction of premixed counterflow methane/air flames by C6F12O fire suppressant. J Fire Sci. https://doi.org/10.1177/0734904116645829

    Article  Google Scholar 

  42. Liu L et al (2019) The inhibition/promotion effect of C6F12O added to a lithium-ion cell syngas premixed flame. Int J Hydrogen Energy 44(2019):22282–22300. https://doi.org/10.1016/j.ijhydene.2019.06.120

    Article  Google Scholar 

  43. Takahashi F et al (2014) Combustion inhibition and enhancement of cup-burner flames by CF3Br, C2HF5, C2HF3Cl2, and C3H2F3Br. Proc Combust Inst. https://doi.org/10.1016/j.proci.2014.05.114

    Article  Google Scholar 

  44. Pagliaro JL et al (2015) Premixed flame inhibition by C2HF3Cl2 and C2HF5. Combust Flame 163:54–65. https://doi.org/10.1016/j.combustflame.2015.08.015

    Article  Google Scholar 

  45. Takahashi F (2017) A computational study of extinguishment and enhancement of propane cup-burner flames by halon and alternative agents. Fire Saf J. https://doi.org/10.1016/j.firesaf.2017.04.010

    Article  Google Scholar 

  46. NFPA. Standard on Aerosol Fire Extinguishing System. NFPA 2010, 2006. Quincy, MA: National Fire Protection Association

  47. Rohilla M et al (2019) Aerosol forming compositions for fire fighting applications: a review. Fire Technol, Springer Nat. https://doi.org/10.1007/s10694-019-00843-7

    Article  Google Scholar 

  48. International Organization for Standardization (2011) Condensed aerosol fire extinguishing systems — Requirements and test methods for components and system design, installation and maintenance — General requirements (ISO Standard No. 15779). Retrieved from https://www.iso.org/standard/52016.html

  49. Rohilla M, Saxena A, Tyagi YK et al (2021) Condensed aerosol based fire extinguishing system covering versatile applications: a review. Fire Technol. https://doi.org/10.1007/s10694-021-01148-4

    Article  Google Scholar 

  50. Ebeling H et al (1997) Development of Gas Generators for Fire Extinguishing. Propellants, Explosives, Pyrotechnics 22, 170–175 (1997)

  51. UL Standard for Fixed Condensed Aerosol Fire Extinguishing System Units. UL 2775, 2020. Underwriters Laboratories Inc

  52. Logeshwaran P et al (2016) Evaluation of cyto- and genotoxic effects of Class B firefighting foam products: Tridol-S 3% AFFF and Tridol-S 6% AFFF to Allium cepa. Environ Technol Innov. https://doi.org/10.1016/j.eti.2016.10.003

    Article  Google Scholar 

  53. Stevenson P (2017) Chapter 17 Fire‐Fighting Foam Technology. Print ISBN: 9780470660805. John Wiley & Sons, Ltd

  54. Bronner JA, Ostroff RK (1989) Concentrated composition for forming an aqueous foam. US patent 4,849,117, July 18, 1989

  55. Norman EC, Regina AC (1993) Alcohol resistant aqueous film-forming firefighting foam. US patent 5,207,932, May 4, 1993

  56. Hubert MJ, Barker SA, Valley DN (2003) Dye colored fire fighting foam concentrate. US patent application 20030001129, January 2, 2003

  57. Hinnant KM et al (2019) Characterizing the role of fluorocarbon and hydrocarbon surfactants in firefighting-foam formulations for fire-suppression. Fire Technol. https://doi.org/10.1007/s10694-019-00932-7

    Article  Google Scholar 

  58. Conroy MW, Fleming JW, Ananth R (2017) Surface cooling of a pool fire by aqueous foams. Combust Sci Technol 189(5):806–840. https://doi.org/10.1080/00102202.2016.1253565

    Article  Google Scholar 

  59. Giles SL et al (2019) Modulation of fluorocarbon surfactant diffusion with diethylene glycol butyl ether for improved foam characteristics and fire suppression. Colloids Surf A 579(2019):123660. https://doi.org/10.1016/j.colsurfa.2019.123660

    Article  Google Scholar 

  60. Ananth R et al (2019) Synergisms between siloxane-polyoxyethylene and alkyl polyglycoside surfactants in foam stability and pool fire extinction. Colloids Surf A 579(2019):123686. https://doi.org/10.1016/j.colsurfa.2019.123686

    Article  Google Scholar 

  61. Kennedy MJ et al (2015) Bubble coarsening dynamics in fluorinated and non-fluorinated firefighting foams. colloids and surfaces a: physicochem. Eng Aspects 470:268–279. https://doi.org/10.1016/j.colsurfa.2015.01.062

    Article  Google Scholar 

  62. Sheng Y et al (2018) Fluorinated and fluorine-free firefighting foams spread on heptane surface. Colloids Surf A 552(2018):1–8. https://doi.org/10.1016/j.colsurfa.2018.05.004

    Article  Google Scholar 

  63. Yu X et al (2020) Comparative studies on foam stability, oil-film interaction and fire extinguishing performance for fluorine-free and fluorinated foams. Process Saf Environ Prot 133(2020):201–215. https://doi.org/10.1016/j.psep.2019.11.016

    Article  Google Scholar 

  64. Cheremisinoff NP (2001) Chapter 3 fire fighting foams. Contaminants of Concern. John Wiley & Sons Inc, Perfluorinated Chemicals (PFCs)

    Google Scholar 

  65. Lattimer BY, Trelles J (2007) Foam spread over a liquid pool. Fire Saf J 42:249–264

    Article  Google Scholar 

  66. Sheng Y et al (2019) Study of environmental-friendly firefighting foam based on the mixture of hydrocarbon and silicone surfactants. Fire Technol. https://doi.org/10.1007/s10694-019-00920-x

    Article  Google Scholar 

  67. Atallah S, Buccigross HL (1971) Development of halogenated hydrocarbon foam (halofoam) extinguishants. Springer, Fire Technology

    Book  Google Scholar 

  68. Conroy MW, Ananth R (2015) Fuel surface cooling by aqueous foam: a pool fire suppression mechanism. Fire Technol 51(667–689):2015. https://doi.org/10.1007/s10694-015-0470-5

    Article  Google Scholar 

  69. Lattimer BY et al (2003) The use of small-scale test data to characterize some aspects of fire fighting foam for suppression modeling. Fire Saf J 38(2003):117–146

    Article  Google Scholar 

  70. Hinnant KM et al (2018) An analytically defined fire-suppressing foam formulation for evaluation of fluorosurfactant replacement. J Surfact Deterg. https://doi.org/10.1002/jsde.12166

    Article  Google Scholar 

  71. Kim AK, Dlugogorski BZ (1997) Multipurpose overhead compressed-air foam system and its fire suppression performance. J Fire Prot Engr 8(3):133–150

    Article  Google Scholar 

  72. Laundess AJ et al (2011) Small-scale test protocol for firefighting foams DEF(AUST) 5706: effect of bubble size distribution and expansion ratio. Fire Technol 47:149–162. https://doi.org/10.1007/s10694-009-0136-2

    Article  Google Scholar 

  73. Laundess AJ et al (2012) Suppression performance comparison for aspirated. Fire Technol 48(625–640):2012. https://doi.org/10.1007/s10694-010-0155-z

    Article  Google Scholar 

  74. Chen T et al (2018) Experimental study on the extinguishing efficiency of compressed air foam sprinkler system on oil pool fire. Procedia Eng 211(2018):94–103

    Article  Google Scholar 

  75. Scheffey JL et al (1995) Evaluating firefighting foams for aviation fire protection. Springer

    Book  Google Scholar 

  76. Chiesa PJ, Alger RS (1980) Severe laboratory fire test for fire fighting foams. Fire Technology. Springer

  77. Hao X (2013) Heavy compressed air foam truck applied to high-rise building fires. Procedia Eng 52(2013):458–467. https://doi.org/10.1016/j.proeng.2013.02.169

    Article  Google Scholar 

  78. Kim HT (1992) Inhibition effectiveness of dry chemical in methane/air flames. Korean J Chem Eng 9(1):1–7

    Article  Google Scholar 

  79. Finnerty AE, Polyanski S (1993) Using powder packs for passive fire protection of military vehicles. J Fire Sci 11(3):242–254

    Article  Google Scholar 

  80. NFPA. Standard on water-mist fire protection systems. NFPA 750, 2010. Quincy, MA: National Fire Protection Association

  81. NFPA. Standard for the installation of sprinkler systems. NFPA 13, 2010. Quincy, MA: National Fire Protection Association

  82. Mawhinney JR, Richardson JK (1996) A Review of Water Mist Fire Suppression Research and Development. Technical Note. Springer

  83. Myree S (2008) Fire suppression and water mist systems. Libr Arch Secur 21(2):169–176. https://doi.org/10.1080/01960070802201920

    Article  Google Scholar 

  84. Hertzberg (2001) The efficiency in fire extinguishment by different types of water-mist systems, [Electronic version]. Paper presented at the International Water Mist Conference, Vienna, Austria

  85. Owen (2004) Using high-pressure water-mist fire protection systems for offshore oil drilling and producing facilities. [Electronic version]. Exploration and Production: The Oil & Gas Review, 56–58

  86. Liu Z, Kim AK (2001) A review of water mist fire suppression technology: Part II—application studies. J Fire Prot Eng. https://doi.org/10.1106/MMGH-XUAG-HP5B-YTDG

    Article  Google Scholar 

  87. Ananth R et al (2012) Effects of fine water mist on a confined blast. Fire Technol 48(641–675):2012. https://doi.org/10.1007/s10694-010-0156-y

    Article  Google Scholar 

  88. Jianghong L et al (2003) Progress in research and application of water-mist fire suppression technology. Chinese Sci Bull 48(8):718–725. https://doi.org/10.1360/02ww0180

    Article  Google Scholar 

  89. Arvidson M (2012) Large-scale water spray and water mist fire suppression system tests for the protection of Ro-Ro cargo decks on ships. Fire Technol. https://doi.org/10.1007/s10694-012-0312-7

    Article  Google Scholar 

  90. Kopp (2002) High-pressure water mist - library and archive protection. [Electronic version]. Paper presented at the International Water Mist Conference, Amsterdam, The Netherlands

  91. Palle (2002) Low-pressure water mist systems—system characteristics. [Electronic version]. Paper presented at the International Water Mist Conference, Amsterdam, The Netherlands

  92. Bellas R et al (2019) Assessment of the fire dynamics simulator for modeling fire suppression in engine rooms of ships with low-pressure water mist. Fire Technol, Springer Nature. https://doi.org/10.1007/s10694-019-00931-8

    Article  Google Scholar 

  93. Weng WG, Fan WW (2002) Experimental study on the mitigation of backdraft in compartment fires with water mist. J Fire Sci 20(4):259–278. https://doi.org/10.1177/073490402762574721

    Article  Google Scholar 

  94. Weng WG, Fan WC (2003) Mitigation of backdraft with water-mist: a reduced-scale experimental study. Process Saf Prog 22:(3). https://doi.org/10.1002/prs.680220305

  95. Xishi W et al (2001) Preliminary study on the interaction of water mist with pool fires. J Fire Sci. https://doi.org/10.1106/E23M-0NGH-3M3E-Y83J

    Article  Google Scholar 

  96. Xishi W et al (2002) Experimental study on the effectiveness of the extinction of a pool fire with water mist. J Fire Sci. https://doi.org/10.1106/073490402028153

    Article  Google Scholar 

  97. Willauer HD et al (2009) Mitigation of TNT and destex explosion effects using water-mist. J Hazard Mater 165:1068–1073. https://doi.org/10.1016/j.jhazmat.2008.10.130

    Article  Google Scholar 

  98. Rosen JS et al (2013) Engineering performance of water-mist fire protection systems with antifreeze. J Fire Prot Eng 23(3):190–225. https://doi.org/10.1177/1042391512475246

    Article  Google Scholar 

  99. Melinder A (2007) Thermophysical properties of aqueous solutions used as secondary working fluids. Ph.D. Thesis, Royal Institute of Technology, KTH, Stockholm, Sweden

  100. Rosen JS, Szkutak MD, Jaskolka SM et al (2012) Engineering performance of water-mist fire protection systems with antifreeze. Project no. MQP KZN 990, Major Qualifying Project, Worcester Polytechnic Institute, Worcester, MA, USA, 26 April 2012

  101. Hodges SE, McCormick SJ (2013) Fire extinguishing agents for protection of occupied spaces in military ground vehicles. Fire Technol 49(379–394):2013. https://doi.org/10.1007/s10694-012-0271-z

    Article  Google Scholar 

  102. J Kevin Boyd, Steven McCormick (2018) Fire protection informational exchange meeting

  103. Andrew H. Hart, Blair C. Lade and Garry R. Hale. (2013). Survivability of a Propellant Fire inside a Simulated Military Vehicle Crew Compartment: Part 1 – Baseline Study. Weapons and Countermeasures Division Defence Science and Technology Organisation. DSTO-RR-0392

  104. Andrew H. Hart, Blair C. Lade and Garry R. Hale. (2013). Survivability of a Propellant Fire inside a Simulated Military Vehicle Crew Compartment: Part 2 – Hazard Mitigation Strategies and Their Effectiveness. Weapons and Countermeasures Division Defence Science and Technology Organisation. DSTO-RR-0393

  105. Kim A, Liu Z, Crampton G (2004) Explosion suppression of an armoured vehicle crew compartment. Proceedings of 2004 International Symposium on Safety Science and Technology, Shanghai, China, Oct. 2004, pp. 1070–1074

  106. Hodges S (2016) Fire protection in military ground vehicles. SAE Int. J Trans Safety. https://doi.org/10.4271/2016-01-1404

    Article  Google Scholar 

  107. Clark RD, Bonney S (2005) Integration of Human Factors and System Safety in the Development of The U.S. Army Tactical Fire Fighting Truck. Proceedings of the Human Factors and Ergonomics Society 49th Annual Meeting

  108. Fire Protection Handbook, 17th ed (1991) National Fire Protection Association, Quincy, MA

  109. Crawford AB, Bauer KW (1994) Simulation study aids halon replacement effort for combat aircraft. Sage

    Book  Google Scholar 

  110. Pohler CH (1978) Fire safety of naval ships—an open challenge. Nav Eng J 90(10). ISSN: 0028-1425. https://doi.org/10.1111/j.1559-3584.1978.tb04271.x

  111. Krinsky JL, Noel W (1991) The Navy's chlorofluorocarbon/halon program. Nav Eng J 107–117. https://doi.org/10.1111/j.1559-3584.1991.tb00941.x

  112. Scheffey JL, Leonard JT (1988) AFFF protection for weapons staging areas. Fire Saf J 14(1988):47–63

    Article  Google Scholar 

  113. Amon F (2020) Fire impact tool- measuring the impact of fire suppression operations on the environment. Fire Saf J. https://doi.org/10.1016/j.firesaf.2020.103071

    Article  Google Scholar 

  114. Zheng W et al (2016) Experiment study of performances of fire detection and fire extinguishing systems in a subway train. Procedia Eng 135(2016):393–402. https://doi.org/10.1016/j.proeng.2016.01.147

    Article  Google Scholar 

  115. Ge Z et al (2016) Computational fluid dynamics studies on the effectiveness of sidewall sprinklers to suppress the fire at the undercarriage of mass rapid transit train. Build Simul. https://doi.org/10.1007/s12273-016-0344-x

    Article  Google Scholar 

  116. Xu ZS et al (2017) A study of fire smoke spreading and control in emergency rescue stations of extra-long railway tunnels. J Loss Prev Process Ind 49(2017):155–161. https://doi.org/10.1016/j.jlp.2017.06.014

    Article  Google Scholar 

  117. Meng Na et al (2012) Full-scale experimental study on fire suppression performance of a designed water-mist system for rescue station of a long railway tunnel. J Fire Sci 30(2):138–157. https://doi.org/10.1177/0734904111428898

    Article  Google Scholar 

  118. Carvel R, Ingason H (2016) Fires in vehicle tunnels. https://doi.org/10.1007/978-1-4939-2565-0_88

  119. Zhang P et al (2014) Experiments of the secondary ignition of gasoline - air mixture in a confined tunnel. J Therm Anal Calorim 2014(118):1773–1780. https://doi.org/10.1007/s10973-014-4082-y

    Article  Google Scholar 

  120. Uddin F (2014) Flame-retardant fibrous materials in an aircraft. J Ind Text. https://doi.org/10.1177/1528083714540700

    Article  Google Scholar 

  121. Szelmanowski A et al (2020) Studying the Dynamic Properties of an Amplifier Board Execution Block in Terms of False Tripping of an Aircraft Fire Suppression System. Doi: https://doi.org/10.1007/978-3-030-13321-4

  122. Kim J et al (2009) Numerical analysis of flow characteristics of fire extinguishing agents in aircraft fire extinguishing systems. J Mech Sci Technol 23(2009):1877–1884. https://doi.org/10.1007/s12206-009-0618-7

    Article  Google Scholar 

  123. Wanga W et al (2019) Investigation of the effect of low pressure on fire hazard in the cargo compartment. Appl Therm Eng 158(2019):113775. https://doi.org/10.1016/j.applthermaleng.2019.113775

    Article  Google Scholar 

  124. Yuan W et al (2018) Open-path Halon 1301 NDIR sensor with temperature compensation. Infrared Phys Technol 97(2019):129–134. https://doi.org/10.1016/j.infrared.2018.12.038

    Article  Google Scholar 

  125. Wang Y et al (2020) Theoretical and experimental studies on the thermal decomposition and fire-extinguishing performance of cis-1,1,1,4,4,4-hexafluoro-2-butene. Int J Quantum Chem 2020:e26160. https://doi.org/10.1002/qua.26160

    Article  Google Scholar 

  126. Lyon RE, Speitel LC (2010) A kinetic model for human blood concentrations of gaseous halocarbon fire-extinguishing agents. Inhal Toxicol 22(14):1151–1161. https://doi.org/10.3109/08958378.2010.529623

    Article  Google Scholar 

  127. Linteris GT et al (2012) Stirred reactor calculations to understand unwanted combustion enhancement by potential halon replacements. Combust Flame 159(2012):1016–1025. https://doi.org/10.1016/j.combustflame.2011.09.011

    Article  Google Scholar 

  128. Linteris GT et al (2013) Unwanted combustion enhancement by C6F12O fire suppressant. Proc Combust Inst 34(2013):2683–2690. https://doi.org/10.1016/j.proci.2012.06.050

    Article  Google Scholar 

  129. Chen M et al (2016) Modeling solubility of nitrogen in clean fire extinguishing agent by Peng-Robinson equation of state and a correlation of Henry’s law constants. Appl Therm Eng 110(2017):457–468. https://doi.org/10.1016/j.applthermaleng.2016.08.179

    Article  Google Scholar 

  130. Hirst R et al (1976) The extinction of fires in aircraft jet engines — Part I, small-scale simulation of fires. Springer

    Book  Google Scholar 

  131. Zhao J et al (2020) Preparation of hydrophobic and oleophobic fine sodium bicarbonate by the gel-sol-gel method and enhanced fire extinguishing performance. Mater Des 186(2020):108331. https://doi.org/10.1016/j.matdes.2019.108331

    Article  Google Scholar 

  132. Chicarello PJ, Shpilberg DC (1976) Minimum extinguishment area required for the safe escape of aircraft occupants during a fuel spill fire. Springer

    Book  Google Scholar 

  133. Niu X et al (2013) Analysis of fire spread and fire extinguishing agent distribution in nacelle of helicopter under no-ventilation condition. Procedia Eng 62(2013):1073–1080. https://doi.org/10.1016/j.proeng.2013.08.163

    Article  Google Scholar 

  134. Daniluk AY, Klyushnikov VY, Kuznetsov II et al (2016) Problems of design and development of advanced superheavy launch vehicles. Sol Syst Res 50:515–522. https://doi.org/10.1134/S0038094616070042

    Article  Google Scholar 

  135. Artamonov VS, Gordiyenko DM, Melikhov AS (2016) Fire safety of ground-based space facilities on the spaceport “vostochny.” Acta Astronaut. https://doi.org/10.1016/j.actaastro.2016.12.009

    Article  Google Scholar 

  136. Gehling R (2007) International safety standards for high-performance marine vehicles – the DSC Code, HSC Codes and the WIG Craft Guidelines. Aust J Mech Eng 4(2):101–110. https://doi.org/10.1080/14484846.2007.11464519

    Article  Google Scholar 

  137. Sprague CM, Richards RC, Blanchard MA (1992) A methodology for evaluation of ship fire safety. Nav Eng J 104(3):104–113. https://doi.org/10.1111/j.1559-3584.1992.tb02229.x

    Article  Google Scholar 

  138. Wang L et al (2018) A study on the flow field and the structure of fire plumes in the coupling process of the water mist and the jet fire of diesel fuel. Procedia Eng 211(2018):736–746

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the support and funding from the French National Agency for Research (ANR) in the scope of the ANR LabCom GreenSprink (2018–2023) project, as well as the support from Campus France in the scope of the first author’s PhD thesis grant (2020–2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Chetehouna.

Ethics declarations

Data availability

This review is based on literature available online from international scientific databases.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junjunan, S.F., Chetehouna, K., Cablé, A. et al. A Review on Fire Protection Systems in Military and Civilian Vehicles. Fire Technol 58, 1097–1136 (2022). https://doi.org/10.1007/s10694-021-01187-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-021-01187-x

Keywords

Navigation