Skip to main content
Log in

Assessment of the Fire Dynamics Simulator for Modeling Fire Suppression in Engine Rooms of Ships with Low-Pressure Water Mist

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Water mist-based fire-extinguishing systems are gaining acceptance for the protection of ship machinery spaces. The use of simulation tools presents a great potential for taking a performance-based design (PBD) approach to these fire scenarios. The Fire Dynamics Simulator (FDS) is the most frequently used and validated fire modeling software; however, studies of low-pressure water mist fire suppression modeling in ship engine rooms are rare. This paper contributes to the current literature by using the FDS to model a series of fire suppression scenarios defined by the International Maritime Organization (IMO) Circulars, including spray and pool fires with heptane and diesel oil, as well as exposed and obstructed fires. The simulation results are compared to data from full-scale tests conducted at recognized fire testing laboratories. Furthermore, an analysis of both the experimental and model uncertainties is carried out to assess the simulations performance. In general, a good agreement in compartment temperature evolution and fire extinguishing time is found for the modeled fire scenarios. The results support the application of FDS in a PBD approach for the design of water mist fire extinguishing systems for machinery spaces in ships. In this way, designers and engineers could model different machinery volumes and nozzles spacings that differ from those prescribed for a one story square engine room of the IMO, and, thus, predict the evolution of temperatures and extinguishing times for get the authorities approval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33

Similar content being viewed by others

References

  1. Charchalis A, Czyz S (2011) Analysis of fire hazard and safety requirements of a sea vessel engine room. J KONES Powertrain Transp 18(2):49–56

    Google Scholar 

  2. Mawhinney JR, Back GG (2016) Water mist fire suppression systems. In: SFPE handbook of fire protection engineering, 5th edn. Springer, New York [cited 2016 Oct 10], pp 1587–645. http://link.springer.com/10.1007/978-1-4939-2565-0_46

  3. Liu Z, Kim AK (1999) A review of water mist fire suppression systems: fundamental studies. J Fire Prot Eng 10(3):32–50

    Article  Google Scholar 

  4. Santangelo PE, Tarozzi L, Tartarini P (2016) Full-scale experiments of fire control and suppression in enclosed car parks: a comparison between sprinkler and water-mist systems. Fire Technol 52(5):1369–407

    Article  Google Scholar 

  5. NFPA 750: Standard on water mist fire protection systems. [cited 2018 Aug 8]. https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=750

  6. International Maritime Organization (2005) IMO MSC/Circ.1165. Revised guidelines for the approval of equivalent water-based fire-extinguishing systems for machinery spaces and cargo pump-rooms. London

  7. International Maritime Organization (2010) IMO MSC.1/Circ.1387. Revised guidelines for the approval of fixed water-based local application fire-fighting systems for use in category a machinery spaces (MSC/CIRC.913). International Maritime Organization, London

  8. McGrattan K, Hostikka S, McDermott R, Floyd J, Vanella M (2018) FDS technical reference guide volume 3: validation, 6th edn. Gaithersburg, MD, p 866. https://pages.nist.gov/fds-smv/manuals.html. Accessed 8 Sept 2019

  9. Vaari J, Hostikka S, Sikanen T, Paajanen A (2012) Numerical simulations on the performance of waterbased fire suppressions systems. VTT Techonology [cited 2016 Oct 3], p 144. http://www.vtt.fi/inf/pdf/technology/2012/T54.pdf

  10. Hostikka S, Kokkala M, Vaari J (2014) Experimental study of the localized room fires NFSC2 test series. VTT, Espoo, p 98

    Google Scholar 

  11. Vaari J, Hostikka S, Sikanen T, Paajanen A (2014) Modeling and simulation of high pressure water mist systems. Fire Technol 50(3):483–504

    Article  Google Scholar 

  12. Rein G, Torero JL, Jahn W, Stern-Gottfried J, Ryder NL, Desanghere S, et al (2009) Round-robin study of a priori modelling predictions of the Dalmarnock fire test one. Fire Saf J 44(4):590–602

    Article  Google Scholar 

  13. Jahn W, Rein G, Torero JL (2011) A posteriori modelling of the growth phase of Dalmarnock fire test one. Build Environ 46(5):1065–1073

    Article  Google Scholar 

  14. Johansson N, Ekholm M (2018) Variation in results due to user effects in a simulation with FDS. Fire Technol 54(1):97–116

    Article  Google Scholar 

  15. Rigollet L, Noterman T, Audouin K, Gay L, Gorza E, Ito T, et al (2012) OECD/NEA PRISME project application report. Saint-Paul-lez-Durance. http://www.oecd-nea.org/jointproj/prisme.html

  16. Gutiérrez-Montes C, Sanmiguel-Rojas E, Viedma A, Rein G (2009) Experimental data and numerical modelling of 1.3 and 2.3 MW fires in a 20 m cubic atrium. Build Environ (44):1827–1839

    Article  Google Scholar 

  17. Gutiérrez-Montes C, Sanmiguel-Rojas E, Burgos MA, Viedma A (2012) On the fluid dynamics of the make-up inlet air and the prediction of anomalous fire dynamics in a large-scale facility. Fire Saf J 51:27–41

    Article  Google Scholar 

  18. Ayala P, Cantizano A, Gutiérrez-Montes C (2014) An experimental and numerical study of the smoke ventilation in atrium fires under dynamic ventilation performance. In: 10th international conference on heat transfer, fluid mechanics and thermodynamics. Orlando, FL [cited 2018 Aug 8]. https://repository.up.ac.za/bitstream/handle/2263/44557/Ayala_Experimental_2014.pdf;sequence=1

  19. Tanaka F, Ohmiya Y, Sugawara S, Morita M, Matsuyama K (2004) A study of fire behavior in a compartment with an activation of fire suppression system. In: GIDAI (ed) Proceedings of the computational simulation models in fire engineering and research. Santander

  20. LeBlanc D (2002) The use of field models for determining the performance of water mist systems: a preliminary analysis. In: IWMA (ed) 2nd international water mist conference proceedings. Amsterdam

  21. Abdrabbo MF, Ayoub AM, Ibrahim MA, Feldin AM (2016) Study the properties of water mist droplet by using FDS. J Civ Environ Eng 6(224):2

    Google Scholar 

  22. Alvear D, Lázaro M, Melgosa JI, Arnáiz F (2014) Characterization of water mist systems using full-scale test and computer modelling. In: IWMA (ed) International water mist conference. Istambul

  23. Kim SC, Ryou HS (2003) An experimental and numerical study on fire suppression using a water mist in an enclosure. Build Environ 38(11):1309–1316

    Article  Google Scholar 

  24. Husted BP, Homstedt G, Hertzberg T (2004) The physics behind water mist systems. In: IWMA conference. Rome, Italy, pp 6–8. https://iwma.net/publications/conference-papers/. Accessed 8 Sept 2019

  25. Jenft A, Boulet P, Collin A, Pianet G, Breton A, Muller A, et al (2013) Can we predict fire extinction by water mist with FDS? Abstract: keywords. In: Congrès Français de Mécanique. Bordeaux, pp 1–6

  26. Jenft A, Collin A, Boulet P, Pianet G, Breton A, Muller A (2014) Experimental and numerical study of pool fire suppression using water mist. Fire Saf J 67:1–12. http://dx.doi.org/10.1016/j.firesaf.2014.05.003

    Article  Google Scholar 

  27. Jenft A, Boulet P, Collin A, Trevisan N, Mauger P-N, Pianet G (2017) Modeling of fire suppression by fuel cooling. Fire Saf J 91(March):680–687. http://dx.doi.org/10.1016/j.firesaf.2017.03.067

    Article  Google Scholar 

  28. Su S, Wang L (2013) Three dimensional reconstruction of the fire in a ship engine room with multilayer structures. Ocean Eng 70:201–207. http://dx.doi.org/10.1016/j.oceaneng.2013.05.032

    Article  Google Scholar 

  29. Back GG, Beyler CL, Di Nenno PJ, Hansen RL (1999) Full-scale water mist design parameters testing, report CG-D-03-99. Groton, CT, p 219

  30. Prasad K, Li C, Kailasanath K, Ndubizu C, Ananth R, Tatem PA (1998) Numerical modeling of fire suppression using water mist. NRL/MR/6410-98-8190. Naval Research Laboratory, Washington DC

    Google Scholar 

  31. Abaya AF (2000) Propagation of fire generated smoke in shipboard spaces with geometric interferences. Dissertation, Naval Postgraduate School, Monterrey; 2000 [cited 2018 Aug 9]. https://calhoun.nps.edu/bitstream/handle/10945/7773/propagationoffir00abay.pdf?sequence=1&isAllowed=y

  32. Vegara B (2000) Propagation of fire generated smoke in shipboard spaces with heat source. Dissertation, Naval Postgraduate School, Monterrey [cited 2018 Aug 9]. http://hdl.handle.net/10945/7775

  33. Zou GW, Liu W-K, Tan HP, Chou WK (2007) Studies of smoke filling process in large space cabin in ship. J Harbin Eng Univ 28(6):616–620

    Google Scholar 

  34. Wang HY, Sahraoui H (2014) Mathematical modelling of pool fire burning rates in a full scale ventilated tunnel. In: Fire safety science-proceedings of the 11th IAFS symposium. Christchurch, New Zealand; 2014 [cited 2016 Sep 25], pp 361–75. http://www.iafss.org/publications/fss/11/361/view/fss_11-361.pdf

  35. Kang HJ, Choi J, Lee D, Park BJ (2017) A framework for using computational fire simulations in the early phases of ship design. Ocean Eng 129(November 2016):335–342. http://dx.doi.org/10.1016/j.oceaneng.2016.11.018

    Article  Google Scholar 

  36. McGrattan K, Hostikka S, McDermott R, Floyd J, Weinscheck C, Overholt K (2018) FDS technical reference guide. Volume 1: mathematical model, 6th edn. NIST National Institute of Standards and Technology, Gaithersburg, MD, 189 p. https://pages.nist.gov/fds-smv/manuals.html. Accessed 8 Sept 2019

  37. McGrattan K, Hostikka S, McDermott R, Floyd J, Vanella M (2019) Fire dynamics simulator user’s guide. NIST special publication 1019 sixth edition. NIST National Institute of Standards and Technology, Gaithersburg, MD, p 347. https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication1019.pdf

  38. Marshall AW, Di Marzo M (2004) Modelling aspects of sprinkler spray dynamics in fires. Process Saf Environ Prot 82(2):97–104

    Article  Google Scholar 

  39. Yu H-Z, Lee JL, Kung H-C (1994) Suppression of rack-storage fires by water. In: International Association For, Fire Safety Science (ed) Fire safety science—proceedings of the fourth international symposium [cited 2018 Jul 23], pp 901–12. http://iafss.org/publications/fss/4/901/view/fss_4-901.pdf

  40. Beyler C (2016) Flammability limits of premixed and diffusion flames. In: SFPE handbook of fire protection engineering, 5th edn. Springer, New York [cited 2018 Jul 1], pp 529–553. http://link.springer.com/10.1007/978-1-4939-2565-0_17

  41. Koseki H, Mulholland GW (1991) The effect of diameter on the burning of crude oil pool fires. Fire Technol 27(1):54–65. http://dx.doi.org/10.1007/BF01039527

    Article  Google Scholar 

  42. Utiskul YP, Quintiere JG (2008) An application of mass loss rate model with fuel response effects in fully-developed compartment fires. Fire Saf Sci 9:827–838

    Article  Google Scholar 

  43. McGrattan KB, Baum HR, Hamins A (2000) Thermal radiation from large pool fires NISTIR 6546. Gaithersburg, Maryland

  44. Drysdale DD (2016) Ignition of liquids. In: SFPE handbook of fire protection engineering. Springer, New York [cited 2018 Jul 1], pp 554–580. http://link.springer.com/10.1007/978-1-4939-2565-0_18

  45. Commission US Nuclear Regulatory (1805) NUREG-1805 fire dynamics tools (FDT)—quantitative fire hazard analysis methods. https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1805/s1/. Accessed 8 Sept 2019

  46. Tanaka Y, Itani Y, Kubota H, Makita T (1988) Thermal conductivity of five normal alkanes in the temperature range 283–373 k at pressures up to 250 MPa. Int J Thermophys 9(3):331–350

    Article  Google Scholar 

  47. Gager III AH, Dominguez G (2016) Tenability criteria in unique situations and atypical buildings. In: Fire and evacuation modelling technical conference. Torremolinos: Thunderhead Engineering, SFPE [cited 2019 May 8]. https://www.thunderheadeng.com/files/com/FEMTC2016/files/d1-14-gager/gager-paper.pdf

  48. Babrauskas V (1983) Estimating large pool fire burning rates. Fire Technol 19(4):251–261

    Article  Google Scholar 

  49. Sikanen T, Hostikka S (2016) Modeling and simulation of liquid pool fires with in-depth radiation absorption and heat transfer. Fire Saf J 80:95–109. http://dx.doi.org/10.1016/j.firesaf.2016.01.002

    Article  Google Scholar 

  50. Johansson N, Van Hees P (2014) A simplified relation between hot layer height and opening mass flow. Fire Saf Sci 11:432–443

    Article  Google Scholar 

  51. Back GG, Beyler CL, Hansen RU (2000) The capabilities and limitations of total flooding, water mist fire suppression systems in machinery space applications. Fire Technol 36(1):8–23

    Article  Google Scholar 

  52. Tanner GA, Knasiak KF (2007) Water mist simplification effects on fire suppression modeling; a challenge to the industry. In: ILASS Americas, 20th annual conference on liquid atomization and spray systems. Chicago, IL: ILASS

  53. Tanner G, Kalata W, Brown K, Schick RJ (2010) Computational study of effects of drop size distribution in fire suppression systems. In: ILASS (ed) 22th ILASS-Americas. Cincinnati, p 10

  54. Heskestad G (2003) Extinction of gas and liquid pool fires with water sprays. Fire Saf J 38(4):301–317

    Article  Google Scholar 

  55. VID Fire-Kill ApS. K6 total flooding system open fine water spray nozzle. [cited 2019 Feb 18]. www.vid.eu

  56. International Maritime Organization (1994) IMO MSC/Circ. 668: alternative arrangements for halon fire extinguishing systems in machinery spaces and pump-rooms. London

  57. Andersson P, Arvidson M, Holmstedt G (1996) Small scale experiments and theoretical aspects of flame extinguishment with water mist. Lund. Report no.: 3080

  58. Wighus R, Aune P, Drangsholt G, Stensaas J (1993) Fine water spray system—extinguishing tests in medium and full scale turbine hood. In: Swedish Testing Institute (ed) International water mist conference. Swedish Testing Institute, Boras

  59. Back G, Lattimer B, Beyler C, DiNenno P, Hansen R (1999) Full-scale testing of water mist fire suppression systems for small machinery spaces with combustible boundaries. Goton, CT. https://apps.dtic.mil/docs/citations/ADA370479. Accessed 8 Sept 2019

  60. Wighus R (1999) Parameters influencing upon the heat load of hydrocarbon fires. Trondheim, p 23. https://risefr.no/media/publikasjoner/upload/nbl-a12108.pdf. Accessed 8 Sept 2019

  61. Wighus R (2012) Mathematical correlations for fire suppression and extinguisment. Trondheim, p 18. https://risefr.com/media/publikasjoner/upload/nbl-a12111.pdf. Accessed 8 Sept 2019

  62. Sikanen T, Hostikka S (2016) Modeling and simulation of liquid pool fires with in-depth radiation absorption and heat transfer. Fire Saf J 80:95–109. http://dx.doi.org/10.1016/j.firesaf.2016.01.002

    Article  Google Scholar 

  63. Hostikka S, McGrattan KB (2018) FDS road map. 2018 [cited 2018 Nov 4]. https://github.com/firemodels/fds/wiki/FDS-Road-Map

Download references

Acknowledgements

The authors are greatly thankful to Mr. Carsten Palle and Mr. Alex Palle from Danish Fire Laboratories, and Mr. Henrik Abrahamsen from VID Fire-Kill ApS. The authors acknowledge the financial support received from the Regional Government of Galicia (Xunta de Galicia) under the project Programa de Consolidación e Estruturación de Unidades de Investigación Competitivas (Grupos de Referencia Competitiva). The computational resources were provided by the Galicia Supercomputing Centre (CESGA), partially funded by the European Regional Development Fund (ERDF) and by the Government of Spain through the Ministry of Economy and Competitiveness (MINECO), as well as by Xunta de Galicia and the Spanish National Research Council (CSIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Bellas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellas, R., Gómez, M.A., González-Gil, A. et al. Assessment of the Fire Dynamics Simulator for Modeling Fire Suppression in Engine Rooms of Ships with Low-Pressure Water Mist. Fire Technol 56, 1315–1352 (2020). https://doi.org/10.1007/s10694-019-00931-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-019-00931-8

Keywords

Navigation