Skip to main content
Log in

Measurement of Flame Emissivity of Hydrocarbon Pool Fires

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Flame emissivity is an important parameter in the study of pool fires. A series of pool fire experiments are carried out with four different fuels namely diesel, gasoline, hexane and kerosene for pool diameters of 0.10 m, 0.13 m and 0.20 m. Flame emissivity at a height of 0.25 times the pool diameter from the base is measured by observing the flame with reference to a black body using infrared camera. Influence of pool diameter (0.3 m, 0.34 m, 0.5 m, 0.7 m and 1.0 m) on flame emissivity at a height of 0.25 times the pool diameter is studied with diesel as the fuel. Variation of flame emissivity with the height of the flame along the center of diesel pool fire is investigated for diameters of 0.3 m, 0.5 m, 0.7 m and 1.0 m. It is observed that the flame emissivity is less at the tip of the flame in comparison with that at the base of the pool fire. The measurement of flame emissivity by observing flame with reference to a black body using infrared camera is corroborated with the measurements conducted with reference to an electrically heated black body for diesel pool fires with diameters 0.3 m, 0.5 m and 0.7 m. Flame emissivity is also inferred from the mass burning rate measurements for diesel oil pool fires of 0.3 m, 0.5 m, 0.7 m and 1.0 m diameters. Flame emissivities are independent of the measurement method. Temperature and surface emissive power distributions of the diesel pool fires for diameters 0.3 m, 0.5 m, 0.7 m and 1.0 m are computed using infrared thermography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38

Similar content being viewed by others

Abbreviations

A :

Constant in Equation (7) (K)

A s :

Pool surface area (m2)

B :

Constant in Equation (7)

D :

Pool diameter (m)

E :

Surface emissive power (kW/m2)

f(ε):

Function of emissivity in Equation (8)

H :

Height of the black body (mm)

H c :

Heat of combustion (MJ/kg)

h g :

Total heat of vaporization or gasification (kJ/kg)

i, j :

Indices indicating the position in thermal images

I b :

Intensity of black body radiation (W/m2)

I bf :

Radiation of black body intensity when viewed through the flame (W/m2)

I f :

Intensity of flame radiation (W/m2)

I t :

Intensity of total radiation (W/m2)

\( \dot{m}^{\prime \prime } \) :

Mass loss rate per unit area (kg/m2 s)

\( \dot{m}_{\infty }^{\prime \prime } \) :

Mass loss rate per unit area of a pool with infinite diameter (kg/m2 s)

OS 300 :

Object signal of the flame and the black body (at 300°C) transmitted through the flame

OS 400 :

Object signal of the flame and the black body (at 400°C) transmitted through the flame

OS p300 :

Object signal of the black body (at 300°C) alone

OS p400 :

Object signal of the black body (at 400°C) alone

Y i :

Distance from the base of the pool to the center of ith black body (mm)

\( \dot{q}_{c}^{\prime \prime } \) :

Convective heat flux (kW/m2)

\( \dot{q}_{loss}^{\prime \prime } \) :

Miscellaneous heat lost flux (kW/m2)

\( \dot{q}_{r}^{\prime \prime } \) :

Radiative loss (kg/m2 s)

\( \dot{q}_{rr}^{\prime \prime } \) :

Re-radiation heat flux (kW/m2)

t :

Time (s)

T :

Absolute temperature (K)

T b :

Black body temperature (K)

T f :

Flame temperature (K)

T t :

Flame temperature combined with black body temperature (K)

W :

Width of the black body (mm)

X :

Horizontal distance from the pool center (m)

Y :

Vertical distance along the axis of the pool, above the fuel bed (m)

α f :

Flame absorptivity

β:

Mean beam length corrector

ε:

Emissivity

ε b :

Black body emissivity

ε f :

Flame emissivity

ε t :

Flame emissivity combined with black body emissivity

η:

Efficiency of combustion

κ :

Extinction coefficient (m−1)

σ:

Stefan–Boltzmann’s constant (5.67 × 10−8 W/m2 K4)

τ f :

Flame transmissivity

References

  1. Agueda A, Perez Y, Planas E, Pastor E (2006) Evaluating the effect of long-term forest fire retardants on thermal properties: fuel heat content and flame emissivity. In: Fifth international conference on forest fires research

  2. Akers, S. M., Conkle, J. L., Thomas, S. N. and Rider, K. B., 2006. “Determination of the Heat of Combustion of Biodiesel Using Bomb Calorimetry,” Journal of Chemical Education 83(2): 260-262.

    Article  Google Scholar 

  3. Babrauskas, V., 1983. “Estimating Large Pool Fire Burning Rates,” Fire Technology 19: 251-261.

    Article  Google Scholar 

  4. Blinov VI, Khudyakov GM (1961) Diffusion of burning liquids US Army Engineering Research and Development Laboratories (English Translation), T-1490a-c. ASTIA, AD 296762

  5. Chatris, J. M., Quintela J., Folc J., Planas E., Arnaldos J., Casal J., 2001. “Experimental study of Burning Rate in Hydrocarbon Pool Fires,” Combustion and Flame 126: 1373-1383.

    Article  Google Scholar 

  6. Chun H, Wehrstedt K-D, Vela I, Schönbucher A (2009) Thermal radiation of di-tert-butyl peroxide pool fires—experimental investigation and CFD simulation. J Hazard Mater 167:105–113

    Article  Google Scholar 

  7. Cong B, Guangxuan L, Zhen H (2009) Extinction limit of diesel pool fires suppressed by water mist. J Fire Sci 27:5–26

    Article  Google Scholar 

  8. Croce, P.A, Mudan, K.S., 1986. Calculating Impacts for Large Open Hydrocarbon Fires, Fire Safety Journal, 11: 99 – 112.

    Article  Google Scholar 

  9. Cuchi, E. P., Chatris J. M., Carlos L., Arnaldos J., 2003. “Determination of Flame Emissivity in Hydrocarbon Pool Fires Using Infrared Thermography,” Fire Technology 39: 261-273.

    Article  Google Scholar 

  10. Dupuy, J. L., Vachet P., Marechal J., Melendez J. and Castro A. J. De, 2007. “Thermal Infrared Emission-Transmission Measurements in Flames from A Cylindrical Forest Fuel Burner,” International Journal of Wildland Fire 16: 324-340.

    Article  Google Scholar 

  11. Hayasaka H, Koseki H, Tashiro Y (1992) Radiation measurements in large-scale kerosene pool flames using high-speed thermography. Fire Technol 28(2):110–122

    Article  Google Scholar 

  12. Koseki H (1989) Combustion properties of large liquid pool fires. Fire Technol 25:241–255

    Article  Google Scholar 

  13. Longenbaugh RS et al (1990) Thermal response of a small scale cask-like test article to three different high temperature environments. Sandia National Laboratories Report to Federal Rail Administration, DOT/FRA/ORD-90/01

  14. McCaffrey BJ (1979) Purely buoyant diffusion flames: some experimental results. National Bureau of Standards, NBSIR 79–1910

  15. Modest, M. F., “Radiative Heat Transfer,” Academic Press, Second edition, 2003.

    Google Scholar 

  16. Munoz M., Planas E., Ferrero F., Casal J., 2007. “Predicting the Emissive Power of Hydrocarbon Pool Fires,” Journal of Hazardous Materials 144: 725-729.

    Article  Google Scholar 

  17. Muñoz M., Arnaldos, J., Casal, J., Planas, E., 2004. “Analysis of the geometric and radiative characteristics of hydrocarbon pool fires,” Combustion and Flame 139: 263-277.

    Article  Google Scholar 

  18. Nakos JT, Jill M (2004) Suo-Anttila and Walter Gill, Shroud Boundary Condition Characterization Experiments at the Radiant heat Facility, Sandia National Laboratories report, SAND2004-5080

  19. Planas-Cuchi E, Montiel H, Casal J (1997) A survey of the origin, type and consequences of fire accidents in process plants and in the transportation of hazardous materials. Trans IChemE 75(B):3–8

    Google Scholar 

  20. Qian C, Saito K (1995) Measurements of pool-fire temperature using IR technique. In: Gore JP (ed) Joint Technical Meeting Proceedings, Combustion Fundamentals and Applications, San Antonio, TX, pp 81–86

  21. Rashbash, D. J., Rogowski Z. W., Stark G. W. V., 1956. “Properties of Fires of Liquids,” Fuel 35(1): 94-107.

    Google Scholar 

  22. Rew, P. J., Hulbert W. G. and Deaves D. M., “Modelling of Thermal Radiation from External Hydrocarbon Pool Fires,” Institution of Chemical Engineers, vol. 75, Part B, 1997, pp. 81-89.

    Google Scholar 

Download references

Acknowledgment

Authors sincerely acknowledge the financial support by Bhabha Atomic Research Centre, Mumbai, India for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Prabhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudheer, S., Prabhu, S.V. Measurement of Flame Emissivity of Hydrocarbon Pool Fires. Fire Technol 48, 183–217 (2012). https://doi.org/10.1007/s10694-010-0206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-010-0206-5

Keywords

Navigation