Skip to main content
Log in

Thermal environment induced by jatropha oil pool fire in a compartment

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article evaluates the burning characteristics of jatropha oil pool fire. Experiments have been carried out in a compartment of size 4 m × 4 m × 4 m, with a door opening of 1 m × 2 m for ventilation purpose. Crude jatropha oil is burned in a pool diameters of 0.3, 0.4, 0.5 and 0.6 m and having an initial fuel depth of 0.045 m. Heat release rate, mass loss rate, exhaust gases concentration (CO2 and O2), profiles of flame temperature, flame height, room corner temperature, door temperature and heat flux at different locations have been recorded. The smoke layer interface is also estimated by means of a thermocouple tree with 19 thermocouples using the integral ratio method. Experimental results showed that the flame temperature profile is similar for all four experiments. Maximum heat release rate achieved is 312.5 kW for the pool size of 0.6 m, and corresponding average mass loss rate is 8.62 g s−1. Also the interface height determined by visual method and integral ratio method matched well during the steady profile phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Indian Petroleum and Natural Gas Statistics, Government of India, Ministry of Petroleum and Natural Gas, Economic Division, New Delhi, 2013–14. www.petroleum.nic.in/docs/pngstat.pdf.

  2. Meyer PM, Rodrigues PHM, Millen DD. Impact of biofuel production in Brazil on the economy, agriculture, and the environment. Anim Front. 2013;3(2):28–37.

    Article  Google Scholar 

  3. McCaffrey BJ. Purely buoyant diffusion flames: some experimental results. NBSIR 79-1910, Center for fire research, National Bureau of Standards. Gaithersburg MD. 20899. 1979.

  4. Bouhafid A, Vantelon JP, Joulain P, Fernandez-pello, AC. On the flame structure at the base of a pool fire. In: Twenty-second symposium on combustion/the Combustion Institute. 1988;1291–8.

  5. Hamins Anthony, Kashiwagi Takashi, Burch Robert R. Characteristics of pool fire burning. Fire resistance of industrial fluids ASTM STP 1284. American Society for Testing and Materials. 1996. p. 15–14.

  6. Gupta AK, Kumar R, Kumar S. Compartment fires: an experimental study. J Appl Fire Sci. 2002;11(3):255–77.

    Article  Google Scholar 

  7. Gupta AK, Kumar Surendra, Singh Bani. Plume analysis above finite size fire sources. In: Fire safety science—Proceedings of the 3rd International Symposium. 1991. p. 445–9.

  8. McCaffrey BJ. Flame height, chapter 1–18, SFPE handbook of fire protection engineering. 1988.

  9. Heskestad G. Luminous heights of turbulent diffusion flames. Fire Saf J. 1983;5:103–5.

    Article  Google Scholar 

  10. Zukoski EE, Cetegan BM, Kubota T. Visible structure of buoyant diffusion flames. In: 20th symposium (Int.) Combust, The Combustion Institute. 1984. p. 361–5.

  11. Fischer SJ, Hardouin-duparc B, Grosshandler WL. The structure and radiation of an ethanol pool fire. Combust Flame. 1987;70:291–315.

    Article  CAS  Google Scholar 

  12. Kumar S, Gupta AK, Cox G. Effects of thermal radiation on the fluid dynamics of compartment fires. In: Fire safety science—proceedings of the 3rd international symposium. 1991. p. 345–9.

  13. Bouhafid A, Vantelon JP, Souil JM. Characterisation of thermal radiation from freely burning oil pool fires. Fire Saf J. 1989;15:367–90.

    Article  Google Scholar 

  14. Chatris JM, Quintila J, Folch J, Planas E, Arnalodos J, Casal J. Experimental study of burning rate in hydrocarbon pool fires. Combust Flame. 2001;126:1373–83.

    Article  CAS  Google Scholar 

  15. Kang QS, Lu SX, Chen B. Experimental study on burning rate of small scale heptane pool fires. Chin Sci Bull. 2010;55(10):973–6.

    Article  CAS  Google Scholar 

  16. Pretrel H, Koched A, Audouin L. Doorway flows induced by the combined effects of natural and forced ventilation in case of multi-compartments large-scale fire experiments. Fire Technol 2016;52(2):489–514.

    Article  Google Scholar 

  17. Pretrel H, Querre P, Forestier M. Experimental study of burning rate behaviour in confined and ventilated fire compartments. In: Fire safety science—proceedings of the 8th international symposium. 2005. p. 1217–11.

  18. Pretrel H, Le Saux W, Audouin L. Determination of the heat release rate of the large scale hydrocarbon pool fires in ventilated compartments. Fire Saf J. 2013;62:192–205.

    Article  CAS  Google Scholar 

  19. Zhang S, Ni X, Zhao M, Zhang R, Zhang H. Experimental study on the characteristics of wood crib fire in a confined space with different ventilation conditions. J Therm Anal Calorim. 2015;120:1383–8.

    Article  CAS  Google Scholar 

  20. Tran V, Morton C, Parthasarathy RN, Gollahalli SR. Pool fires of biofuels and their blends with petroleum diesel. Int J Green Energy. 2014;11:595–610.

    Article  CAS  Google Scholar 

  21. Ding Yanming, Wang Changjian, Shouxiang Lu. The effect of azeotropism on combustion characteristics of blended fuel pool fire. J Hazard Mater. 2014;271:82–6.

    Article  CAS  Google Scholar 

  22. Huggett C. Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater. 1980;4:61–4.

    Article  CAS  Google Scholar 

  23. Parker WJ. Calculations of the heat release rate by oxygen consumption for various applications. NBSIR 81-2427-1. 1982. U.S. Department of Commerce, National Bureau of Standards, National Engineering Laboratory. Center for Fire Research. Washington. DC 20234.

  24. Heskestad G. Fire plumes. Section 2, Chapter 2-2, SFPE handbook of fire protection engineering, 2nd edn. PJ DiNenno, editor in chief, National Fire Protection Association, Quincy, Massachusetts; 1995.

  25. Thomas PH. The size of flames from natural fires. In: Nine symposium (international) on combustion, The Combustion Institute, Pittsburgh, Pennsylvania, 1962;844–15.

  26. Shambhu VB, Bhattacharya TK, Nayak LK, Das S. Studies on characterization of raw Jatropha oil and its biodiesel with relevance of diesels. Int J Emerg Technol Adv Eng. 2013;3:48–56.

    Google Scholar 

  27. Pramanik K. Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine. Renew Energy. 2003;28:239–49.

    Article  CAS  Google Scholar 

  28. Gubitz GM, Mittelbach M, Trabi M. Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresour Technol. 1999;67:73–9.

    Article  CAS  Google Scholar 

  29. Foidl N, Foidl G, Sanchez M, Mittelbach M, Hackel S. Jatropha curcas L. as a source for the production of biofuel in nacaragua. Bioresour Technol. 1996;58:77–85.

    Article  CAS  Google Scholar 

  30. Karaj S, Huaitalla RM, Muller J. Physical, mechanical and chemical properties of Jatropha curcas seeds and kernels. In: Conference on international agricultural research for development. 2008.

  31. Klassen M, Gore JP. Structure and radiation properties of pool fires. Final report, in: NIST-GCR-94-651, National Institute of Standards and Technology, Gaithersburg, MD, 1994.

  32. He Q, Li C, Lu S, Huang S. Experimental study of pool fire burning behaviors in ceiling vented ship cabins. Proc Eng. 2014;71:462–7.

    Article  Google Scholar 

  33. Hiroshi K, Taro Y. Air entrainment and thermal radiation from Heptane pool fires. Fire Technol. 1988;24(1):33–47.

    Article  Google Scholar 

  34. Blinov VI, Khudiakov GN. Diffusion burning of liquids. U.S. Army Translation, NTIS no AD296762, 1961.

  35. Sudheer S, Prabhu SV. Measurement of flame emissivity of hydrocarbon pool fires. Fire Technol. 2012;48:183–217.

    Article  Google Scholar 

  36. Hamins A, Yang JC, Kashiwagi T. A global model for predicting the burning rates of liquid pool fires. NISTIR 6381.

  37. Tanaka T, Yamada S. Reduced scale experiments for convective heat transfer in the early stages of fires. Int J Eng Perform Based Fire Codes. 1999;1:196–7.

    Google Scholar 

  38. Spinti JP, Thornock JN, Eddings EG, Smith PJ, Sarofim AF. Heat transfer to objects in pool fires. WIT transactions on State of the art in Science and Engineering. 2008;31.

  39. You WJ, Nam D-G, Youm MC, Kim S-C, Ryou H-S. Analysis of heat release rate with various diameter of heptane pool fire using large scale cone calorimeter. Fire Sci Eng. 2014;28:1–7.

    Article  Google Scholar 

  40. Skarsbø LR. An experimental study of pool fires and validation of different CFD fire models. MS Thesis, Department of Physics and Technology, University of Bergen, 2011.

  41. Steckler KD, Quintiere JG, Rinkinen WJ. Flow induced by fire in a compartment. U.S. Department of Commerce, National Bureau of Standards, NBSIR 82-2520, 1982.

  42. Modak AT. Thermal radiation from pool fires. Combust Flame. 1977;29:177–92.

    Article  CAS  Google Scholar 

  43. Casal J. Evaluation of the effects and consequences of major accidents in industrial plants. Chapter 3—Fire accidents. Elsevier. 2008;8.

  44. Rasbash DJ, Rogowski ZW, Stark GWV. Properties of fires of liquids. Fuel. 1956;35:94–132.

    Google Scholar 

  45. Quintiere JG, Steckler K, Corley D. An assessment of fire induced flows in compartments. Fire Sci Technol. 1984;4:1–14.

    Article  Google Scholar 

Download references

Acknowledgements

The present work is supported by Bhabha Atomic Research Centre, Mumbai, under the Grant No: DAE 507 MID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Chaudhary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, A., Gupta, A., Kumar, S. et al. Thermal environment induced by jatropha oil pool fire in a compartment. J Therm Anal Calorim 127, 2397–2415 (2017). https://doi.org/10.1007/s10973-016-5722-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5722-1

Keywords

Navigation