Skip to main content
Log in

A refined Weissman estimator for extreme quantiles

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

Weissman extrapolation methodology for estimating extreme quantiles from heavy-tailed distributions is based on two estimators: an order statistic to estimate an intermediate quantile and an estimator of the tail-index. The common practice is to select the same intermediate sequence for both estimators. In this work, we show how an adapted choice of two different intermediate sequences leads to a reduction of the asymptotic bias associated with the resulting refined Weissman estimator. The asymptotic normality of the latter estimator is established and a data-driven method is introduced for the practical selection of the intermediate sequences. Our approach is compared to the Weissman estimator and to six bias reduced estimators of extreme quantiles on a large scale simulation study. It appears that the refined Weissman estimator outperforms its competitors in a wide variety of situations, especially in the challenging high bias cases. Finally, an illustration on an actuarial real data set is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

Code is available at https://github.com/michael-allouche/refined-weissman.git. The Secura Belgian reinsurance data set is available in the package CASdatasets of the R software (Dutang and Charpentier 2020).

References

  • Alves, M.I.F., Gomes, M.I., de Haan, L.: A new class of semi-parametric estimators of the second order parameter. Port. Math. 60(2), 193–214 (2003a)

    MathSciNet  MATH  Google Scholar 

  • Alves, M.I.F., de Haan, L., Lin, T.: Estimation of the parameter controlling the speed of convergence in extreme value theory. Math. Methods Statist. 12(2), 155–176 (2003b)

    MathSciNet  Google Scholar 

  • Beirlant, J., Dierckx, G., Guillou, A.: Estimation of the extreme-value index and generalized quantile plots. Bernoulli 11(6), 949–970 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes: Theory and Applications. Wiley (2004)

    Book  MATH  Google Scholar 

  • Beran, J., Schell, D., Stehlík, M.: The harmonic moment tail index estimator: asymptotic distribution and robustness. Ann. Inst. Stat. Math. 66(1), 193–220 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular variation. Cambridge University Press (1989)

    MATH  Google Scholar 

  • Brilhante, M.F., Gomes, M.I., Pestana, D.: A simple generalisation of the Hill estimator. Comput. Stat. Data Anal. 57(1), 518–535 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Caeiro, F., Gomes, M.I., Pestana, D.: Direct reduction of bias of the classical Hill estimator. Revstat Stat. J. 3(2), 113–136 (2005)

    MathSciNet  MATH  Google Scholar 

  • Cai, J.J., Einmahl, J.H., de Haan, L., Zhou, C. (2015). Estimation of the marginal expected shortfall: the mean when a related variable is extreme. J. Roy. Stat. Soc. Ser. B, 417–442

  • Ciuperca, G., Mercadier, C.: Semi-parametric estimation for heavy tailed distributions. Extremes 13, 55–87 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Daouia, A., Gardes, L., Girard, S., Lekina, A.: Kernel estimators of extreme level curves. Test 20(2), 311–333 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Daouia, A., Gijbels, I., Stupfler, G.: Extremiles: a new perspective on asymmetric least squares. J. Am. Stat. Assoc. 114(527), 1366–1381 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Daouia, A., Girard, S., Stupfler, G.: Estimation of tail risk based on extreme expectiles. J. Roy. Stat. Soc. B 80, 262–292 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Daouia, A., Girard, S., Stupfler, G.: Extreme M-quantiles as risk measures: From L1 to Lp optimization. Bernoulli 25, 264–309 (2019)

  • Daouia, A., Girard, S., Stupfler, G.: Tail expectile process and risk assessment. Bernoulli 26(1), 531–556 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • de Haan, L., Ferreira, A.: Extreme value theory: an introduction. Springer Science and Business Media (2007)

  • de Haan, L., Peng, L.: Comparison of tail index estimators. Stat. Neerl. 52(1), 60–70 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • de Wet, T., Goegebeur, Y., Munch, M.R.: Asymptotically unbiased estimation of the second order tail parameter. Stat. Probab. Lett. 82, 565–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Dekkers, A.L.M., Einmahl, J.H.J., de Haan, L.: A moment estimator for the index of an extreme-value distribution. Ann. Stat. 17, 1833–1855 (1989)

    MathSciNet  MATH  Google Scholar 

  • Deme, E., Gardes, L., Girard, S.: On the estimation of the second order parameter for heavy-tailed distributions. Revstat Stat. J. 11, 277–299 (2013)

    MathSciNet  MATH  Google Scholar 

  • Drees, H., de Haan, L., Resnick, S.: How to make a Hill plot. Ann. Stat. 28, 254–274 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Dutang, C., Charpentier, A.: CASdatasets: Insurance datasets. R package version 1.0-11(2020)

  • El Methni, J., Gardes, L., Girard, S., Guillou, A.: Estimation of extreme quantiles from heavy and light tailed distributions. J. Stat. Plan. Inference 142(10), 2735–2747 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • El Methni, J., Stupfler, G.: Extreme versions of Wang risk measures and their estimation for heavy-tailed distributions. Stat. Sin. 27, 907–930 (2017)

    MathSciNet  MATH  Google Scholar 

  • El Methni, J., Stupfler, G.: Improved estimators of extreme Wang distortion risk measures for very heavy-tailed distributions. Econometrics Stat. 6, 129–148 (2018)

    Article  MathSciNet  Google Scholar 

  • Goegebeur, Y., Beirlant, J., de Wet, T.: Kernel estimators for the second order parameter in extreme value statistics. J. Stat. Plan. Inference 140, 2632–2652 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Goegebeur, Y., Guillou, A., Schorgen, A.: Nonparametric regression estimation of conditional tails: the random covariate case. Statistics 48(4), 732–755 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Gomes, M.I., Brilhante, M.F., Caeiro, F., Pestana, D.: A new partially reduced-bias mean-of-order p class of extreme value index estimators. Comput. Stat. Data Anal. 82, 223–237 (2015)

  • Gomes, M.I., Brilhante, M.F., Pestana, D.: New reduced-bias estimators of a positive extreme value index. Commun. Stat. Simul. Comput. 45(3), 833–862 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Gomes, M.I., Caeiro, F., Figueiredo, F., Henriques-Rodrigues, L., Pestana, D.: Reduced-bias and partially reduced-bias mean-of-order-p value-at-risk estimation: a Monte-Carlo comparison and an application. J. Stat. Comput. Simul. 90(10), 1735–1752 (2020a)

  • Gomes, M.I., Caeiro, F., Figueiredo, F., Henriques-Rodrigues, L., Pestana, D.: Corrected-Hill versus partially reduced-bias value-at-risk estimation. Commun. Stat. Simul. Comput. 49(4), 867–885 (2020b)

    Article  MathSciNet  MATH  Google Scholar 

  • Gomes, M.I., de Haan, L., Peng, L.: Semi-parametric estimation of the second order parameter in statistics of extremes. Extremes 5, 387–414 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Gomes, M.I., Pestana, D.: A sturdy reduced-bias extreme quantile (VaR) estimator. J. Am. Stat. Assoc. 102(477), 280–292 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, P.: On some simple estimates of an exponent of regular variation. J. Roy. Stat. Soc. B 44(1), 37–42 (1982)

    MathSciNet  MATH  Google Scholar 

  • Hall, P., Welsh, A.W.: Adaptive estimates of parameters of regular variation. Ann. Stat. 13, 331–341 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3, 1163–1174 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Kazama, S., Sato, A., Kawagoe, S.: Evaluating the cost of flood damage based on changes in extreme rainfall in Japan. Sustain. Sci. 4(61). (2009). https://doi.org/10.1007/s11625-008-0064-y

  • Kratz, M., Resnick, S.I.: The QQ-estimator and heavy tails. Stoch. Model. 12(4), 699–724 (1996)

    MathSciNet  MATH  Google Scholar 

  • Manjunath, B.G., Caeiro, F.: evt0: Mean of order p, peaks over random threshold Hill and high quantile estimates. R package version 1.1-3 (2013)

  • Paulauskas, V., Vaiciulis, M.: On an improvement of Hill and some other estimators. Lith. Math. J. 53(3), 336–355 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Peng, L.: Asymptotic unbiased estimators for the extreme value index. Stat. Probab. Lett. 38, 107–115 (1998)

    Article  MATH  Google Scholar 

  • Pickands, J.: Statistical inference using extreme order statistics. Ann. Stat. 3(1), 119–131 (1975)

    MathSciNet  MATH  Google Scholar 

  • Resnick, S., Stărică, C.: Smoothing the Hill estimator. Adv. Appl. Probab. 29, 271–293 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Rootzén, H., Tajvidi, N.: Extreme value statistics and wind storm losses: a case study. Scand. Actuar. J. 1, 70–94 (1997)

    Article  MATH  Google Scholar 

  • Schultze, J., Steinebach, J.: On least squares estimates of an exponential tail coefficient. Stat. Risk Model. 14(4), 353–372 (1996)

    MathSciNet  MATH  Google Scholar 

  • Stupfler, G.: On a relationship between randomly and non-randomly thresholded empirical average excesses for heavy tails. Extremes 22, 749–769 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Weissman, I.: Estimation of parameters and large quantiles based on the k largest observations. J. Am. Stat. Assoc. 73(364), 812–815 (1978)

Download references

Acknowledgements

The authors would like to thank the two referees and the Associate Editor for their valuable suggestions, which have significantly improved the paper. The authors would also like to thank Frederico Caeiro for providing the R code associated with Algorithm 4.1 and Algorithm 4.2 from Gomes et al. (2020a). This work is supported by the French National Research Agency (ANR) in the framework of the Investissements d’Avenir Program (ANR-15-IDEX-02). S. Girard also acknowledges the support of the Chair Stress Test, Risk Management and Financial Steering, led by the French Ecole Polytechnique and its Foundation and sponsored by BNP Paribas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan El Methni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A. Appendix: proofs

Proof of Theorem 1

It follows the same lines as the one of de Haan and Ferreira (2007, Theorem 4.3.8). Let us consider the expansion

$$\begin{aligned} \frac{\sqrt{k'_n}}{\log d_n} \left( \frac{\hat{q}_n(\alpha _n,k_n,k'_n)}{q(\alpha _n)}-1 \right) = \frac{\sqrt{k'_n}}{\log d_n} \left( \frac{X_{n-k_n,n}\; d_n^{\hat{\gamma }_n(k'_n)}}{U(1/\alpha _n)}- 1 \right) = \frac{ T_{1,n} + T_{2,n} + T_{3,n} }{T_{0,n}}, \end{aligned}$$

where we have introduced:

$$\begin{array}{l} T_{0,n} = d_n^{-\gamma } \; \frac{U(1/\alpha _n)}{U(n/k_n)},\\ T_{1,n}= \frac{\sqrt{k'_n}}{\log d_n} \left( \frac{X_{n-k_n,n}}{U(n/k_n)}-1\right) d_n^{\hat{\gamma }_n(k'_n)-\gamma },\\ T_{2,n}= \frac{\sqrt{k'_n}}{\log d_n} \left( d_n^{\hat{\gamma }_n(k'_n)-\gamma } -1\right) ,\\ T_{3,n}= \frac{\sqrt{k'_n}}{\log d_n} (1-T_{0,n}). \end{array}$$

Let us first focus on \(T_{0,n}\). From de Haan and Ferreira (2007, Theorem 2.3.9), it follows from the second-order condition (5) that, for any \(\varepsilon\), \(\delta >0\), there exists \(t_0>1\) such that for all \(t\ge t_0\) and \(x\ge 1\),

$$\begin{aligned} \left| \frac{1}{A_0(t)} \left( \frac{U(tx)}{U(t)}-x^{\gamma }\right) -x^{\gamma }\frac{x^{\rho }-1}{\rho } \right| \le \varepsilon x^{\gamma +\rho +\delta }, \end{aligned}$$

where \(A_0\) is asymptotically equivalent to A. Letting \(x=d_n\) and \(t=n/k_n\) then yields

$$\begin{aligned} \left| \frac{T_{0,n}-1}{A_0(n/k_n)} - \frac{d_n^{\rho }-1}{\rho }\right| \le \varepsilon d_n^{\rho +\delta }, \end{aligned}$$

or equivalently,

$$\begin{aligned} T_{0,n} = 1 + A_0(n/k_n) \left( \frac{d_n^{\rho }-1}{\rho } + \varepsilon R_n\right) , \end{aligned}$$

where \(|R_n|\le d_n^{\rho +\delta }\). Now, writing \(|A_0|(t)=t^\rho \ell (t)\), where \(\ell\) is a slowly-varying function, it follows,

$$\begin{aligned} A_0(n/k_n) = A_0(n/k'_n) (k'_n/k_n)^\rho \frac{\ell (n/k_n)}{\ell (n/k'_n)}, \end{aligned}$$

as \(n\rightarrow \infty\). As a consequence, we obtain

$$\begin{aligned} T_{0,n} = 1 + (k'_n/k_n)^\rho A_0(n/k'_n) \left( \frac{d_n^{\rho }-1}{\rho } + \varepsilon R_n \right) \frac{\ell (n/k_n)}{\ell (n/k'_n)}, \end{aligned}$$

and letting \(\varepsilon \rightarrow 0\) yields

$$\begin{aligned} T_{0,n} = 1 + (k'_n/k_n)^\rho A_0(n/k'_n) \left( \frac{d_n^{\rho }-1}{\rho } \right) \frac{\ell (n/k_n)}{\ell (n/k'_n)}. \end{aligned}$$
(21)

Second, under the assumption \(\sqrt{k'_n}(\hat{\gamma }_n(k'_n)-\gamma ) {\mathop {\longrightarrow }\limits ^{d}}\mathcal{N}(\lambda \mu , \sigma ^2)\) as \(\sqrt{k'_n} A(n/k_n')\rightarrow \lambda\), we get

$$\begin{aligned} d_n^{\hat{\gamma }_n(k'_n)-\gamma } = \exp \left( \frac{(\log d_n)}{\sqrt{k'_n}} \sqrt{k'_n} (\hat{\gamma }_n(k'_n)-\gamma )\right) = \exp \left( \frac{(\log d_n)}{\sqrt{k'_n}} (\lambda \mu + \sigma \xi _n) \right) , \end{aligned}$$

where \(\xi _n{\mathop {\longrightarrow }\limits ^{d}}\mathcal{N}(0,1)\). Recalling that \((\log d_n)/\sqrt{k'_n} \rightarrow 0\) as \(n\rightarrow \infty\), the following first order expansion holds

$$\begin{aligned} d_n^{\hat{\gamma }_n(k'_n)-\gamma } = 1 + \frac{(\log d_n)}{\sqrt{k'_n}} (\lambda \mu + \sigma \xi _n) + O_P\left( \frac{(\log d_n)^2}{k'_n}\right) . \end{aligned}$$
(22)

In particular, \(d_n^{\hat{\gamma }_n(k'_n)-\gamma }{\mathop {\longrightarrow }\limits ^{\mathbb {P}}}1\) and therefore,

$$\begin{aligned} T_{1,n} = \frac{\sqrt{k'_n/k_n}}{\log d_n} \sqrt{k_n} \left( \frac{X_{n-k_n,n}}{U(n/k_n)}-1\right) (1+o_P(1)) = \frac{\sqrt{k'_n/k_n}}{\log d_n} \gamma \xi '_n (1+o_P(1)), \end{aligned}$$
(23)

where \(\xi '_n{\mathop {\longrightarrow }\limits ^{d}}\mathcal{N}(0,1)\), from de Haan and Ferreira (2007, Theorem 2.2.1). Third, it immediately follows from (22) that

$$\begin{aligned} T_{2,n} = \lambda \mu + \sigma \xi _n +O_P\left( \frac{\log d_n}{\sqrt{k'_n}}\right) . \end{aligned}$$
(24)

Finally, in view of (21) and recalling that \(\sqrt{k'_n}A_0(n/k'_n)\rightarrow \lambda\), one has

$$\begin{aligned} T_{3,n} = \lambda (k'_n/k_n)^\rho \left( \frac{1-d_n^{\rho }}{\rho \log d_n}\right) \frac{\ell (n/k_n)}{\ell (n/k'_n)}(1+o(1)). \end{aligned}$$
(25)

Collecting (21), (23), (24), and (25) yields

$$\begin{aligned} \begin{aligned} \frac{\sqrt{k'_n}}{\log d_n} \left( \frac{\hat{q}_n(\alpha _n,k_n,k'_n)}{q(\alpha _n)}-1 \right)&= \lambda \mu + \lambda (k'_n/k_n)^\rho \left( \frac{1-d_n^{\rho }}{\rho \log d_n}\right) \frac{\ell (n/k_n)}{\ell (n/k'_n)}(1+o(1))\\ {}&+ \sigma \xi _n + \frac{\sqrt{k'_n/k_n}}{\log d_n} \gamma \xi '_n (1+o_P(1)) + O_P\left( \frac{\log d_n}{\sqrt{k'_n}}\right) , \end{aligned} \end{aligned}$$
(26)

since \(T_{0,n}=1+o(T_{3,n})\). Besides, assumptions \((k'_n/k_n)^\rho /(\log d_n)\rightarrow c\ge 0\) and \(d_n\rightarrow \infty\) as \(n\rightarrow \infty\) imply

$$\begin{aligned} \frac{\sqrt{k'_n}}{\log d_n} \left( \frac{\hat{q}_n(\alpha _n,k_n,k'_n)}{q(\alpha _n)}-1 \right) {\mathop {\longrightarrow }\limits ^{d}}\mathcal{N}(\lambda (\mu +c/\rho ),\sigma ^2), \end{aligned}$$

and the result is proved. \(\blacksquare\)

Proof of Corollary 1

Under assumption (7), Eq. (26) in the proof of Theorem 1 can be simplified as

$$\begin{aligned} \begin{aligned} \frac{\sqrt{k'_n}}{\log d_n} \left( \frac{\hat{q}_n(\alpha _n,k_n,k'_n)}{q(\alpha _n)}-1 \right)&= \lambda \mu + \lambda (k'_n/k_n)^\rho \left( \frac{1-d_n^{\rho }}{\rho \log d_n}\right) (1+o(1))\\ {}&+ \sigma \xi _n + \frac{\sqrt{k'_n/k_n}}{\log d_n} \gamma \xi '_n (1+o_P(1))+ O_P\left( \frac{\log d_n}{\sqrt{k'_n}}\right) , \end{aligned} \end{aligned}$$

since \(\ell\) is asymptotically constant. Let us moreover note that

$$\begin{aligned} \frac{\log d_n}{\sqrt{k'_n}} = o\left( \frac{\sqrt{k'_n/k_n}}{\log d_n}\right) \Longleftrightarrow \frac{\sqrt{k_n}(\log d_n)^2}{k'_n}=o(1) \Longleftrightarrow \frac{\log d_n}{\sqrt{k'_n}}=o(k_n^{-1/4}) \end{aligned}$$

and therefore

$$\begin{aligned} \frac{\sqrt{k^{\prime}_n}}{\log d_n} \left( \frac{\hat{q}_n(\alpha _n,k_n,k^{\prime}_n)}{q(\alpha _n)}-1 \right) =& \lambda \mu + \lambda (k^{\prime}_n/k_n)^\rho \left( \frac{1-d_n^{\rho }}{\rho \log d_n}\right) (1+o(1)) \\&+ \sigma \xi _n + \frac{\sqrt{k^{\prime}_n/k_n}}{\log d_n} \gamma \xi^{\prime}_n(1+o_P(1)), \end{aligned}$$

which proves the result. \(\blacksquare\)

Proof of Lemma 1

(i) Letting \(f(x)=-\rho (\log x)/(1-x^\rho )\) for all \(x\ge 1\) and \(\rho <0\), from (9) one has \(k_n^\star = \mu ^{1/\rho } k_n (f(d_n))^{1/\rho }\) with \(d_n=k_n/(n\alpha _n)\ge 1\). First, routine calculations give:

$$\begin{aligned} \frac{\partial k_n^\star }{\partial k_n} = \mu ^{1/\rho } (f(d_n))^{1/\rho } \left( 1 + \frac{d_n}{\rho } \frac{f'(d_n)}{f(d_n)}\right) = \mu ^{1/\rho } (f(d_n))^{1/\rho } \left( \frac{1}{\rho \log d_n} + \frac{1}{1-d_n^\rho } \right) \ge 0, \end{aligned}$$

for all \(d_n\ge 1\). As a conclusion, \({\partial k_n^\star }/{\partial k_n}\ge 0\) which proves that \(k_n^\star\) is an increasing function of \(k_n\). Second, it is easily shown that f is increasing and \(f(1)=1\), leading to \(f(d_n)\ge 1\) and thus \(k_n^\star \le \mu ^{1/\rho }k_n\).

(ii) is a consequence of \(f(x) \sim -\rho \log x\) as \(x\rightarrow \infty\).

(iii) Remark that assumption \(\log (n\alpha _n)/\log (k_n)\rightarrow c' \le 0\) implies that \(\log d_n\sim (1-c') \log k_n\) as \(n\rightarrow \infty\). The conclusion follows. \(\blacksquare\)

Proof of Corollary 2

It is sufficient to prove that assumptions (i) and (iii) of Theorem 1 hold true. First, Lemma 1(ii) entails that \(k_n^\star /k_n\sim \tau (\log d_n)^{1/\rho }\) as \(n\rightarrow \infty\). Besides, from (7), we have \({A(n/k_n^\star )}/{A(n/k_n)} \sim (k_n^\star /k_n)^{-\rho },\) so that

$$\begin{aligned} \sqrt{k_n^\star } A(n/k_n^\star ) \sim (k_n^\star /k_n)^{1/2-\rho } \sqrt{k_n} A(n/k_n) \sim \tau ^{1/2-\rho } (\log d_n)^{1/(2\rho )-1} \sqrt{k_n} A(n/k_n) \rightarrow \lambda ' \tau ^{1/2-\rho } \end{aligned}$$

as \(n\rightarrow \infty\) in view of the first part of (10). Assumption (i) of Theorem 1 thus holds true with \(\lambda = \lambda ' \tau ^{1/2-\rho }\). Second,

$$\begin{aligned} \frac{\log d_n}{\sqrt{k_n^\star }} = \frac{\log d_n}{\sqrt{k_n}} (k_n^\star /k_n)^{-1/2} \sim \tau ^{-1/2} \frac{(\log d_n)^{1-1/(2\rho )}}{\sqrt{k_n}} \rightarrow 0 \end{aligned}$$
(27)

as \(n\rightarrow \infty\) in view of the second part of (10). Third,

$$\begin{aligned} \frac{(k_n^\star /k_n)^\rho }{\log d_n} \rightarrow \tau ^\rho \end{aligned}$$
(28)

as \(n\rightarrow \infty\). Collecting (27) and (28) proves that assumption (iii) of Theorem 1 thus holds true with \(c=\tau ^\rho\). \(\blacksquare\)

Proof of Lemma 2

Recall that, from the proof of Lemma 1(iii), \(\log d_n\sim (1-c') \log k_n\) as \(n\rightarrow \infty\). Let us then observe that

$$\begin{aligned} \frac{\log d_n}{1-d_n^{\hat{\rho }_n}} = \frac{\log d_n}{1 - \exp (\rho \log d_n + O_P(1))} = \frac{\log d_n}{1 - O_P(d_n^\rho )} = (\log d_n) (1 + O_P(d_n^\rho )) \end{aligned}$$

and consequently

$$\begin{aligned} \left( \frac{\log d_n}{1-d_n^{\hat{\rho }_n}}\right) ^{1/\hat{\rho }_n}&= \exp \left( \frac{\log \log d_n + O_P(d_n^\rho )}{\rho + O_P(1/\log d_n)}\right) \\ {}&=\exp \left( \frac{\log \log d_n}{\rho } + O_P\left( \frac{\log \log d_n}{\log d_n}\right) + O_P(d_n^\rho ) \right) \\ {}&= (\log d_n)^{1/\rho } (1 + o_P(1)). \end{aligned}$$

Besides, since \(\hat{\rho }_n\) is a consistent estimator of \(\rho\) and \(\mu (\cdot )\) is continuous, it follows that \((-\hat{\rho }_n \mu (\hat{\rho }_n))^{1/\hat{\rho }_n} {\mathop {\longrightarrow }\limits ^{\mathbb {P}}}(-\rho \mu (\rho ))^{1/\rho }\) and therefore

$$\begin{aligned} \begin{aligned} k_n \left( -\hat{\rho }_n \mu (\hat{\rho }_n)\frac{\log d_n}{1-d_n^{\hat{\rho }_n}}\right) ^{1/\hat{\rho }_n}&=k_n \left( -\rho \mu (\rho )(\log d_n)\right) ^{1/\rho } (1 +o_P(1))\\ {}&=k_n \left( -\rho \mu (\rho )(1-c')(\log k_n)\right) ^{1/\rho } (1 +o_P(1))\\ {}&= k_n^\star (1+o_P(1)), \end{aligned} \end{aligned}$$

in view of Lemma 1(iii). Remarking that the right hand side term tends to infinity in probability, one immediately has

$$\begin{aligned} \hat{k}_n^\star =\left\lfloor k_n \left( -\hat{\rho }_n \mu (\hat{\rho }_n)\frac{\log d_n}{1-d_n^{\hat{\rho }_n}}\right) ^{1/\hat{\rho }_n}\right\rfloor =k_n^\star (1+o_P(1)), \end{aligned}$$

and the result is proved. \(\blacksquare\)

Proof of Corollary 3

The first step is to prove that

$$\begin{aligned} \frac{\sqrt{\hat{k}_n^\star }}{\log d_n} \left( \frac{\hat{q}_n(\alpha _n,k_n,\hat{k}_n^\star )}{q(\alpha _n)}-1 \right) {\mathop {\longrightarrow }\limits ^{d}}\mathcal{N}(0,\sigma ^2). \end{aligned}$$
(29)

To this end, recall that \(\log (n\alpha _n)/\log (k_n)\rightarrow c'\le 0\) implies that \(\log d_n\sim (1-c') \log k_n\) as \(n\rightarrow \infty\) and therefore condition (10) of Corollary 2 is fulfilled under the assumptions of Corollary 3. Besides, recalling that \(k_n/n\rightarrow 0\) as \(n\rightarrow \infty\), Lemma 2 entails that \(\hat{k}_n^\star {\mathop {\longrightarrow }\limits ^{\mathbb {P}}}\infty\) and \(\hat{k}_n^\star /n {\mathop {\longrightarrow }\limits ^{\mathbb {P}}}0\). Therefore, for n large enough, \(\hat{k}_n^\star < n\) almost surely. Besides, for all \(m_n\in \{1,\dots ,n\}\),

$$\begin{aligned} \frac{\sqrt{\hat{k}_n^\star }}{\log d_n} \left( \frac{\hat{q}_n(\alpha _n,k_n,\hat{k}_n^\star )}{q(\alpha _n)}-1 \right) | \{\hat{k}_n^\star =m_n \} {\mathop {=}\limits ^{d}}\frac{\sqrt{m_n}}{\log d_n} \left( \frac{\hat{q}_n(\alpha _n,k_n,m_n)}{q(\alpha _n)}-1 \right) . \end{aligned}$$

By Stupfler (2019, Lemma 8), since \(\hat{k}_n^\star \in \{1,\dots ,n-1\}\) and \(\hat{k}_n^\star {\mathop {\longrightarrow }\limits ^{\mathbb {P}}}\infty\), it is enough to show that the desired convergence (29) holds with \(\hat{q}_n(\alpha _n,k_n,\hat{k}_n^\star )\) replaced by its de-conditioned version \(\hat{q}_n(\alpha _n,k_n,m_n)\). This is a direct consequence of Corollary 2. The second and final step consists in replacing \(\hat{k}_n^\star\) by its non random version \(k_n^\star\) in the rate of convergence of (29). This can be achieved using Lemma 2 and Slutsky’s lemma. \(\blacksquare\)

B. Appendix: tables

Table 3 RMSEs associated with eight estimators of the extreme quantile \(q(\alpha _n=1/n)\) on a Burr distribution. The best result is emphasized in bold. RMSEs larger than 1 are not reported
Table 4 RMSEs associated with eight estimators of the extreme quantile \(q(\alpha _n=1/n)\) on a NHW distribution. The best result is emphasized in bold. RMSEs larger than 1 are not reported
Table 5 RMSEs associated with eight estimators of the extreme quantile \(q(\alpha _n=1/n)\) on five heavy-tailed distributions. The best result is emphasized in bold. RMSEs larger than 1 are not reported
Table 6 RMSEs associated with eight estimators of the extreme quantile \(q(\alpha _n=1/(2n))\) on a Burr distribution. The best result is emphasized in bold. RMSEs larger than 1 are not reported
Table 7 RMSEs associated with eight estimators of the extreme quantile \(q(\alpha _n=1/(2n))\) on a NHW distribution. The best result is emphasized in bold. RMSEs larger than 1 are not reported
Table 8 RMSEs associated with eight estimators of the extreme quantile \(q(\alpha _n=1/(2n))\) on five heavy-tailed distributions. The best result is emphasized in bold. RMSEs larger than 1 are not reported

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allouche, M., El Methni, J. & Girard, S. A refined Weissman estimator for extreme quantiles. Extremes 26, 545–572 (2023). https://doi.org/10.1007/s10687-022-00452-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-022-00452-8

Keywords

AMS 2000 subject classifications

Navigation