Skip to main content
Log in

X-ray interferometry with transmissive beam combiners for ultra-high angular resolution astronomy

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Note : other explanations of the observations are possible, [e.g. 15].

  2. In fact with a 2 beam interferometer not even the value of y is critical if only the fringe amplitude (not phase) is required. y must simply be stable.

  3. http://lheawww.gsfc.nasa.gov/~kcg/beamline/home.html

  4. http://henke.lbl.gov/optical_constants

References

  1. Broderick, A.E., Loeb, A.: Imaging the black hole silhouette of M87: implications for jet formation and black hole spin. Astrophys. J. 697, 1164 (2009)

    Article  ADS  Google Scholar 

  2. Cash, W.: X-ray interferometry. Exp. Astron. 16, 91 (2003)

    Article  ADS  Google Scholar 

  3. Cash, W., Shipley, A., Osterman, S.,Joy, M.: Laboratory detection of X-ray fringes with a grazing-incidence interferometer. Nature 407, 160 (2000)

    Article  ADS  Google Scholar 

  4. Cash, W.C.: Maxim: micro-arc-second X-ray imaging mission. In: Shao, M. (ed.) SPIE Conference Series, vol. 4852, pp. 196–209 (2003)

  5. Clauser, J.F., Reinsch, M.W.: New theoretical and experimental results in fresnel optics with applications to matter-wave and X-ray interferometry. Appl. Phys., B Lasers Opt. 54, 380 (1992)

    Article  ADS  Google Scholar 

  6. Gendreau, K., et al.: MAXIM micro arcsecond X-ray imaging mission—a proposal in response to call for mission concepts NRA 03-OSS-01-VM. Technical report, NASA-GSFC (2003)

  7. Gerlich, S., Hackermüller, L., Hornberger, K., Stibor, A., Ulbricht, H., Gring, M., Goldfarb, F., Savas, T., Müri, M., Mayor, M., Arndt, M.: A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules. Nature Physics 3, 711 (2007)

    Article  ADS  Google Scholar 

  8. Iwasawa, K., Miniutti, G., Fabian, A.C.: Flux and energy modulation of redshifted iron emission in NGC 3516: implications for the black hole mass. Mon. Not. R. Astron. Soc. 355, 1073 (2004)

    Article  ADS  Google Scholar 

  9. Jovanović, P., Popović, L.Č.: X-ray emission from accretion disks of AGN: signatures of supermassive black holes. ArXiv e-prints (2009)

  10. Momose, A., Kawamoto, S., Koyama, I.: X-ray Talbot Interferometry for medical phase imaging. In: Yamada, H., Mochizuki-Oda, N., Sasaki, M. (eds.) American Institute of Physics Conference Series, vol. 716, pp. 156–159 (2004)

  11. Pfeiffer, F., Bech, M., Bunk, O., Kraft, P., Eikenberry, E.F., Brönnimann, C., Grünzweig, C., David, C.: Hard-X-ray dark-field imaging using a grating interferometer. Nat. Mater. 7, 134 (2008)

    Article  ADS  Google Scholar 

  12. Shipley, A.F., Cash, W.C., Gendreau, K.C., Gallagher, D.J.: MAXIM interferometer tolerances and tradeoffs. In: Truemper, J.E., Tananbaum, H.D. (eds.) SPIE Conference Series, vol. 4851, pp 568–577 (2003)

  13. Skinner, G.K.: Diffractive/refractive optics for high energy astronomy. I. Gamma-ray phase Fresnel lenses. Astron. & Astrophys. 375, 691 (2001)

    Article  ADS  Google Scholar 

  14. Skinner, G.K.: Design and imaging performance of achromatic diffractive-refractive X-ray and gamma-ray Fresnel lenses. Appl. Opt. 43, 4845 (2004)

    Article  ADS  Google Scholar 

  15. Vaughan, S., Uttley, P.: On the evidence for narrow, relativistically shifted X-ray lines. Mon. Not. R. Astron. Soc. 390, 421 (2008)

    Article  ADS  Google Scholar 

  16. White, N.: Imaging black holes. Nature 407, 146 (2000)

    Article  ADS  Google Scholar 

  17. Willingale, R.: A practical system for X-ray interferometry. In: Hasinger, G., Turner, M.J.L. (eds.) SPIE Conference Series, vol. 5488, pp. 581–592 (2004)

  18. Wu, S.-M., Wang, T.-G.: Iron line profiles and self-shadowing from relativistic thick accretion discs. Mon. Not. R. Astron. Soc. 378, 841 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are is grateful to K. Gendreau, Z. Arzoumanian and the team responsible for the development of the GSFC 600 m interferometry test bed and to 3M Optical Service Division and Microsharp Corporation Ltd., U.K. for providing film samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald K. Skinner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skinner, G.K., Krizmanic, J.F. X-ray interferometry with transmissive beam combiners for ultra-high angular resolution astronomy. Exp Astron 27, 61 (2009). https://doi.org/10.1007/s10686-009-9175-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10686-009-9175-4

Keywords

PACS

Navigation