Skip to main content
Log in

Leaf toughness is a better predictor of herbivory and plant performance than leaf mass per area (LMA) in temperate evergreens

  • Research
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The mechanical strengthening of leaves protects seedlings from herbivore damage, particularly in shade-tolerant evergreens. Interspecific studies have shown that leaf mass per area (LMA) and leaf toughness (force-to-punch) can play this role. Here we compared the influence of LMA and leaf toughness on herbivory and plant performance in a temperate rainforest. In seedlings of 14 evergreen species, we addressed the across-species relationship between LMA and force-to-punch, and compared the strength of their associations with herbivory and with species’ light requirements. Moreover, in four understory species we performed a multivariate analysis within-species, analogue to phenotypic selection analysis, evaluating the correlation between seedling performance, estimated as chlorophyll fluorescence (Fv/Fm), and force-to-punch, LMA, lamina density and lamina thickness. LMA and force-to-punch were positively associated across species. Herbivory was negatively correlated with both force-to-punch and LMA, but a stepwise multiple regression showed that force-to-punch was a better predictor of herbivory. Neither leaf lamina density nor thickness were associated with herbivore damage. Those species that were more shade-tolerant had leaves with higher force-to-punch and higher LMA, and less slender seedlings. In the within-species analyses in four shade-tolerant species, seedling performance was generally positively associated with force-to-punch, but not with LMA, lamina thickness, or lamina density. Both interspecific and within-species analyses showed that force-to-punch is more strongly related to herbivore damage and plant performance than LMA. This consistency between interspecific patterns of trait covariation and within-species trait-performance associations suggests that natural selection could have shaped the relationships between mechanical traits and ecological roles observed across species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data underlying this study are available from the author on request.

Code availability

Not applicable

References

  • Ackerly DD, Reich PB (1999) Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. Am J Bot 86:1272–1281

    Article  CAS  PubMed  Google Scholar 

  • Ackerly DD, Dudley SA, Sultan SE, Schmitt J, Coleman JS, Linder CR, Sandquist DR, Geber MA, Evans AS, Dawson TE, Lechowicz MJ (2000) The evolution of plant ecophysiological traits: recent advances and future directions. Bioscience 50:979–995

    Article  Google Scholar 

  • Alvarez-Clare S, Kitajima K (2007) Physical defence traits enhance seedling survival of neotropical tree species. Funct Ecol 21:1044–1054

    Article  Google Scholar 

  • Anderegg LDL, Berner LT, Badgley G, Sethi ML, Law BE, HilleRisLambers J (2018) Within-species patterns challenge our understanding of the leaf economics spectrum. Ecol Lett 21:734–744

    Article  PubMed  Google Scholar 

  • Aragón CF, Escudero A, Valladares F (2008) Stress-induced dynamic adjustments of reproduction differentially affect fitness components of a semi‐arid plant. J Ecol 96:222–229

    Article  Google Scholar 

  • Aranwela N, Sanson G, Read J (1999) Methods of assessing leaf-fracture properties. New Phytol 144:369–383

    Article  Google Scholar 

  • Arntz AM, DeLucia EH, Jordan N (2000) From fluorescence to fitness: variation in photosynthetic rate affects fecundity and survivorship. Ecology 81:2567–2576

    Article  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    PubMed  Google Scholar 

  • Clark DB, Clark DA (1989) The role of physical damage in the seedling mortality regime of a neotropical rain forest. Oikos 55:225–230

    Article  Google Scholar 

  • Clark DB, Clark DA (1991) The impact of physical damage on canopy tree regeneration in tropical rain forest. J Ecol 79:447–457

    Article  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Wright SJ, Sheremet’ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016) The global spectrum of plant form and function. Nature 529:167–171

    Article  PubMed  Google Scholar 

  • Domínguez CA, Dirzo R, Bullock SH (1989) On the function of floral nectar in Croton suberosus (Euphorbiaceae). Oikos 56:109–114

    Article  Google Scholar 

  • Dorsch K (2003) Hydrogeologische Untersuchungen der Geothermalfelder von Puyehue und Cordón Caulle, Chile. Dissertation, Ludwig-Maximilians Universität

  • Drake DR, Pratt LW (2001) Seedling mortality in Hawaiian rain forest: the role of small-scale physical disturbance. Biotropica 33:319–323

    Google Scholar 

  • Futuyma DJ (2005) Evolutionary biology. In: Futuyma DJ (ed) Evolution. Sinauer Associates, Sunderland, pp 1–15

    Google Scholar 

  • Gianoli E (2001) Lack of differential plasticity to shading of internodes and petioles with growth habit in Convolvulus arvensis (Convolvulaceae). Int J Plant Sci 162:1247–1252

    Article  Google Scholar 

  • Gianoli E, Saldaña A (2013) Phenotypic selection on leaf functional traits of two congeneric species in a temperate rainforest is consistent with their shade tolerance. Oecologia 173:13–21

    Article  PubMed  Google Scholar 

  • Gianoli E, Salgado-Luarte C (2017) Tolerance to herbivory and the resource availability hypothesis. Biol Lett 13:20170120

    Article  PubMed  PubMed Central  Google Scholar 

  • Gianoli E, Saldaña A, Jiménez-Castillo M, Valladares F (2010) Distribution and abundance of vines along the light gradient in a southern temperate rainforest. J Veg Sci 21:66–73

    Article  Google Scholar 

  • Gianoli E, Salgado-Luarte C, Escobedo VM (2023) Shade tolerance and the relationship between herbivory and light availability. Int J Plant Sci 184:519–524

    Article  Google Scholar 

  • Golding AJ, Johnson GN (2003) Down-regulation of linear and activation of cyclic electron transport during drought. Planta 218:107–114

    Article  CAS  PubMed  Google Scholar 

  • Gommers CMM, Visser EJW, St Onge KR, Voesenek LACJ, Pierik R (2013) Shade tolerance: when growing tall is not an option. Trends Plant Sci 18:65–71

    Article  CAS  PubMed  Google Scholar 

  • Gray GR, Chauvin LP, Sarhan F, Huner NP (1997) Cold acclimation and freezing tolerance (a complex interaction of light and temperature). Plant Physiol 114:467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hüner NP, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • Hunter JP (1998) Key innovations and the ecology of macroevolution. Trends Ecol Evol 13:31–36

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Qian H (2023) U. PhyloMaker: an R package that can generate large phylogenetic trees for plants and animals. Plant Divers 45:347–352

    Article  PubMed  Google Scholar 

  • Kitajima K, Poorter H (2010) Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytol 186:708–721

    Article  PubMed  Google Scholar 

  • Kitajima K, Llorens A-M, Stefanescu C, Timchenko MV, Lucas PW, Wright SJ (2012) How cellulose-based leaf toughness and lamina density contribute to long leaf lifespans of shade‐tolerant species. New Phytol 195:640–652

    Article  PubMed  Google Scholar 

  • Kuusk V, Niinemets Ü, Valladares F (2018) A major trade-off between structural and photosynthetic investments operative across plant and needle ages in three Mediterranean pines. Tree Physiol 38:543–557

    Article  PubMed  Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226

    Article  PubMed  Google Scholar 

  • Linder CR (2000) Adaptive evolution of seed oil composition. Am Nat 156:442–458

    Article  PubMed  Google Scholar 

  • Lusk CH (2002) Leaf area accumulation helps juvenile evergreen trees tolerate shade in a temperate rainforest. Oecologia 132:188–196

    Article  PubMed  Google Scholar 

  • Lusk CH, Corcuera LJ (2011) Effects of light availability and growth rate on leaf lifespan of four temperate rainforest Proteaceae. Rev Chil Hist Nat 84:269–277

    Article  Google Scholar 

  • Lusk CH, Warton DI (2007) Global meta-analysis shows that relationships of leaf mass per area with species shade tolerance depend on leaf habit and ontogeny. New Phytol 176:764–774

    Article  PubMed  Google Scholar 

  • Lusk CH, Chazdon RL, Hofmann G (2006) A bounded null model explains juvenile tree community structure along light availability gradients in a temperate rain forest. Oikos 112:131–137

    Article  Google Scholar 

  • Lusk CH, Reich PB, Montgomery RA, Ackerly DA, Cavender-Bares J (2008a) Why are evergreen leaves so contrary about shade? Trends Ecol Evol 23:299–303

    Article  PubMed  Google Scholar 

  • Lusk CH, Falster DS, Jara-Vergara CK, Jiménez‐Castillo M, Saldaña‐Mendoza A (2008b) Ontogenetic variation in light requirements of juvenile rainforest evergreens. Funct Ecol 22:454–459

    Article  Google Scholar 

  • Lusk CH, Onoda Y, Kooyman R, Gutiérrez-Girón A (2010) Reconciling species‐level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight. New Phytol 186:429–438

    Article  PubMed  Google Scholar 

  • Lusk CH, Pérez-Millaqueo MM, Piper FI, Saldaña A (2011) Ontogeny, understorey light interception and simulated carbon gain of juvenile rainforest evergreens differing in shade tolerance. Ann Bot 108:419–428

    Article  PubMed  PubMed Central  Google Scholar 

  • Madriaza K, Saldaña A, Salgado-Luarte C, Escobedo VM, Gianoli E (2019) Chlorophyll fluorescence may predict tolerance to herbivory. Int J Plant Sci 180:81–85

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Molina-Montenegro MA, Torres-Díaz C, Gallardo-Cerda J, Leppe M, Gianoli E (2013) Seabirds modify El Niño effects on tree growth in a southern Pacific island. Ecology 94:2415–2425

    Article  PubMed  Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998

    Article  CAS  PubMed  Google Scholar 

  • Nabity PD, Zavala JA, DeLucia EH (2009) Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Ann Bot 103:655–663

    Article  CAS  PubMed  Google Scholar 

  • Onoda Y, Hikosaka K, Hirose T (2004) Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct Ecol 18:419–425

    Article  Google Scholar 

  • Onoda Y, Westoby M, Adler PB, Choong AM, Clissold FJ, Cornelissen JH, Díaz S, Dominy NJ, Elgart A, Enrico L, Fine PVA, Howard JJ, Jalili A, Kitajima K, Kurokawa H, McArthur C, Lucas PW, Markesteijn L, Pérez-Harguindeguy N, Poorter L, Richards L, Santiago LS, Sosinski EE, Van Bael SA, Warton DI, Wright IJ, Wright SJ, Yamashita N (2011) Global patterns of leaf mechanical properties. Ecol Lett 14:301–312

    Article  PubMed  Google Scholar 

  • Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü, Poorter H, Tosens T, Westoby M (2017) Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol 214:1447–1463

    Article  CAS  PubMed  Google Scholar 

  • Osnas JLD, Katabuchi M, Kitajima K, Wright SJ, Reich PB, Van Bael SA, Kraft NJB, Samaniego MJ, Pacala SW, Lichstein JW (2018) Divergent drivers of leaf trait variation within species, among species, and among functional groups. Proc Natl Acad Sci USA 115:5480–5485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Vendramini F, Cornelissen JH, Gurvich DE, Cabido M (2003) Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecol 28:642–650

    Article  Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) (1991) Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York

    Google Scholar 

  • Qian H, Jin Y (2016) An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J Plant Ecol 9:233–239

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. Vienna, Austria

    Google Scholar 

  • Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. Int J Plant Sci 64:S143–S164

    Article  Google Scholar 

  • Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  • Saldaña A, Lusk CH (2003) Influencia De las especies del dosel en la disponibilidad de recursos y regeneración avanzada en un bosque templado lluvioso del sur de Chile. Rev Chil Hist Nat 76:639–650

    Article  Google Scholar 

  • Saldaña A, Gianoli E, Lusk CH (2005) Ecophysiological responses to light availability in three Blechnum species (Pteridophyta, Blechnaceae) of different ecological breadth. Oecologia 145:252–257

    Article  PubMed  Google Scholar 

  • Saldaña A, Lusk CH, Gonzáles WL, Gianoli E (2007) Natural selection on ecophysiological traits of a fern species in a temperate rainforest. Evol Ecol 21:651–662

    Article  Google Scholar 

  • Salgado-Luarte C, Gianoli E (2010) Herbivory on temperate rainforest seedlings in sun and shade: resistance, tolerance and habitat distribution. PLoS ONE 5:e11460

    Article  PubMed  PubMed Central  Google Scholar 

  • Salgado-Luarte C, Gianoli E (2012) Herbivores modify selection on plant functional traits in a temperate rainforest understory. Am Nat 180:E42–E53

    Article  PubMed  Google Scholar 

  • Salgado-Luarte C, Gianoli E (2017) Shade tolerance and herbivory are associated with RGR of tree species via different functional traits. Plant Biol 19:413–419

    Article  CAS  PubMed  Google Scholar 

  • Salgado-Luarte C, González-Teuber M, Madriaza K, Gianoli E (2023) Trade-off between plant resistance and tolerance to herbivory: mechanical defenses outweigh chemical defenses. Ecology 104:e3860

    Article  PubMed  Google Scholar 

  • Schluter D (1996) Ecological causes of adaptive radiation. Am Nat 148:S40–S64

    Article  Google Scholar 

  • Shabala S (2003) Screening plants for environmental fitness: chlorophyll fluorescence as a Holy Grail for plant breeders. In: Hemantaranjan A (ed) Advances in Plant Physiology, vol 5. Scientific, Jodhpur, pp 287–340

    Google Scholar 

  • Shah DU, Reynolds TP, Ramage MH (2017) The strength of plants: theory and experimental methods to measure the mechanical properties of stems. J Exp Bot 68:4497–4516

    Article  CAS  PubMed  Google Scholar 

  • Symonds MRE, Blomberg SP (2014) A primer on phylogenetic generalised least squares. In: Garamszegi LZ (ed) Modern phylogenetic comparative methods and their application in evolutionary biology: concepts and practice. Springer, Berlin, pp 105–130

    Chapter  Google Scholar 

  • Thomson VP, Cunningham SA, Ball MC, Nicotra AB (2003) Compensation for herbivory by Cucumis sativus through increased photosynthetic capacity and efficiency. Oecologia 134:167–175

    Article  PubMed  Google Scholar 

  • Valladares F, Niinemets Ü (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst 39:237–257

    Article  Google Scholar 

  • Valladares F, Saldaña A, Gianoli E (2012) Costs versus risks: architectural changes with changing light quantity and quality in saplings of temperate rainforest trees of different shade tolerance. Austral Ecol 37:35–43

    Article  Google Scholar 

  • Van Gelder HA, Poorter L, Sterck F (2006) Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytol 171:367–378

    Article  PubMed  Google Scholar 

  • Walters MB, Reich PB (1999) Low-light carbon balance and shade tolerance in the seedlings of woody plants: do winter deciduous and broad-leaved evergreen species differ? New Phytol 143:143–154

    Article  Google Scholar 

  • Westbrook JW, Kitajima K, Burleigh JG, Kress WJ, Erickson DL, Wright SJ (2011) What makes a leaf tough? Patterns of correlated evolution between leaf toughness traits and demographic rates among 197 shade-tolerant woody species in a neotropical forest. Am Nat 177:800–811

    Article  PubMed  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Evol Syst 33:125–159

    Article  Google Scholar 

  • Wilson KE, Ivanov AG, Öquist G, Grodzinski B, Sarhan F, Hüner NP (2006) Energy balance, organellar redox status, and acclimation to environmental stress. Botany 84:1355–1370

    CAS  Google Scholar 

  • Witkowski ETF, Lamont BB (1991) Leaf specific mass confounds leaf density and thickness. Oecologia 88:486–493

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Pieter P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM (2014) Three keys to the radiation of angiosperms into freezing environments. Nature 506:89–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank CONAF (National Forestry Corporation) for granting permits to work in Puyehue National Park. We are grateful to Y. Alcayaga, A. Vigil and K. Madriaza for help with fieldwork. VME was supported by FONDECYT 3200434.

Funding

This study was funded by FONDECYT (Fondo Nacional de Desarrollo Científico y Tecnológico) grants 1140070 and 1180334 awarded to EG.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, EG; methodology, EG, CSL, VME, GCS; formal analysis, EG, VME; data curation, EG, VME; writing—original draft preparation, EG; writing—review and editing, EG, CSL, VME, GCS; funding acquisition, EG.

Corresponding author

Correspondence to Ernesto Gianoli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors agreed with the content of the manuscript and all gave explicit consent to submit.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gianoli, E., Salgado-Luarte, C., Escobedo, V.M. et al. Leaf toughness is a better predictor of herbivory and plant performance than leaf mass per area (LMA) in temperate evergreens. Evol Ecol (2024). https://doi.org/10.1007/s10682-024-10298-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10682-024-10298-0

Keywords

Navigation